krishnamishra8848 commited on
Commit
a4f3a43
·
verified ·
1 Parent(s): 7a6f615

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -1
README.md CHANGED
@@ -1,4 +1,57 @@
1
  ---
2
  license: apache-2.0
3
  pipeline_tag: object-detection
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  pipeline_tag: object-detection
4
+ ---
5
+ # Face Mask Detection Model
6
+
7
+ ```python
8
+ # Example Code: You can test this model on colab or anywhere u want
9
+
10
+ # Install necessary libraries
11
+ !pip install ultralytics huggingface_hub
12
+
13
+ # Download the model from Hugging Face
14
+ from huggingface_hub import hf_hub_download
15
+ from ultralytics import YOLO
16
+ from google.colab import files
17
+ from IPython.display import Image, display
18
+ import cv2
19
+ import matplotlib.pyplot as plt
20
+
21
+ # Define repository and file path
22
+ repo_id = "krishnamishra8848/Face_Mask_Detection"
23
+ filename = "best.pt" # File name in your Hugging Face repo
24
+
25
+ # Download the model file
26
+ model_path = hf_hub_download(repo_id=repo_id, filename=filename)
27
+ print(f"Model downloaded to: {model_path}")
28
+
29
+ # Load the YOLOv8 model
30
+ model = YOLO(model_path)
31
+
32
+ # Upload an image for testing
33
+ print("Upload an image to test:")
34
+ uploaded = files.upload()
35
+ image_path = list(uploaded.keys())[0]
36
+
37
+ # Display the uploaded image
38
+ print("Uploaded Image:")
39
+ display(Image(filename=image_path))
40
+
41
+ # Run inference on the uploaded image
42
+ print("Running inference...")
43
+ results = model.predict(source=image_path, conf=0.5)
44
+
45
+ # Save and visualize the results
46
+ print("Saving and displaying predictions...")
47
+ for result in results:
48
+ annotated_image = result.plot() # Annotate the image with bounding boxes and labels
49
+ # Convert annotated image to RGB for display with matplotlib
50
+ annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
51
+ plt.figure(figsize=(10, 10))
52
+ plt.imshow(annotated_image_rgb)
53
+ plt.axis("off")
54
+ plt.title("Prediction Results")
55
+ plt.show()
56
+
57
+