krishanusinha20 commited on
Commit
d316c57
·
verified ·
1 Parent(s): 3596cd3

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: Find the most popular payment method used in 2024.
12
+ sentences:
13
+ - SELECT * FROM orders WHERE customer_id = 42;
14
+ - SELECT customer_id, COUNT(order_id) AS order_count FROM orders WHERE order_date
15
+ BETWEEN '2024-01-01' AND '2024-12-31' GROUP BY customer_id HAVING order_count
16
+ >= 3;
17
+ - SELECT payment_method, COUNT(*) AS usage_count FROM payments WHERE payment_date
18
+ BETWEEN '2024-01-01' AND '2024-12-31' GROUP BY payment_method ORDER BY usage_count
19
+ DESC LIMIT 1;
20
+ - source_sentence: Which products sold the most in 2024?
21
+ sentences:
22
+ - SELECT COUNT(*) AS total_orders FROM orders WHERE order_date >= DATE('now', '-6
23
+ months');
24
+ - SELECT p.category, SUM(oi.subtotal) AS total_revenue FROM order_items oi JOIN
25
+ products p ON oi.product_id = p.product_id GROUP BY p.category ORDER BY total_revenue
26
+ DESC LIMIT 3;
27
+ - SELECT product_id, SUM(quantity) AS total_sold FROM order_items JOIN orders ON
28
+ order_items.order_id = orders.order_id WHERE order_date BETWEEN '2024-01-01' AND
29
+ '2024-12-31' GROUP BY product_id ORDER BY total_sold DESC LIMIT 10;
30
+ pipeline_tag: sentence-similarity
31
+ library_name: sentence-transformers
32
+ ---
33
+
34
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
35
+
36
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
37
+
38
+ ## Model Details
39
+
40
+ ### Model Description
41
+ - **Model Type:** Sentence Transformer
42
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
43
+ - **Maximum Sequence Length:** 256 tokens
44
+ - **Output Dimensionality:** 384 dimensions
45
+ - **Similarity Function:** Cosine Similarity
46
+ <!-- - **Training Dataset:** Unknown -->
47
+ <!-- - **Language:** Unknown -->
48
+ <!-- - **License:** Unknown -->
49
+
50
+ ### Model Sources
51
+
52
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
53
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
54
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
55
+
56
+ ### Full Model Architecture
57
+
58
+ ```
59
+ SentenceTransformer(
60
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
61
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
62
+ (2): Normalize()
63
+ )
64
+ ```
65
+
66
+ ## Usage
67
+
68
+ ### Direct Usage (Sentence Transformers)
69
+
70
+ First install the Sentence Transformers library:
71
+
72
+ ```bash
73
+ pip install -U sentence-transformers
74
+ ```
75
+
76
+ Then you can load this model and run inference.
77
+ ```python
78
+ from sentence_transformers import SentenceTransformer
79
+
80
+ # Download from the 🤗 Hub
81
+ model = SentenceTransformer("krishanusinha20/multi-agentic-sql-generator-model")
82
+ # Run inference
83
+ sentences = [
84
+ 'Which products sold the most in 2024?',
85
+ "SELECT product_id, SUM(quantity) AS total_sold FROM order_items JOIN orders ON order_items.order_id = orders.order_id WHERE order_date BETWEEN '2024-01-01' AND '2024-12-31' GROUP BY product_id ORDER BY total_sold DESC LIMIT 10;",
86
+ "SELECT COUNT(*) AS total_orders FROM orders WHERE order_date >= DATE('now', '-6 months');",
87
+ ]
88
+ embeddings = model.encode(sentences)
89
+ print(embeddings.shape)
90
+ # [3, 384]
91
+
92
+ # Get the similarity scores for the embeddings
93
+ similarities = model.similarity(embeddings, embeddings)
94
+ print(similarities.shape)
95
+ # [3, 3]
96
+ ```
97
+
98
+ <!--
99
+ ### Direct Usage (Transformers)
100
+
101
+ <details><summary>Click to see the direct usage in Transformers</summary>
102
+
103
+ </details>
104
+ -->
105
+
106
+ <!--
107
+ ### Downstream Usage (Sentence Transformers)
108
+
109
+ You can finetune this model on your own dataset.
110
+
111
+ <details><summary>Click to expand</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Out-of-Scope Use
118
+
119
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
120
+ -->
121
+
122
+ <!--
123
+ ## Bias, Risks and Limitations
124
+
125
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
126
+ -->
127
+
128
+ <!--
129
+ ### Recommendations
130
+
131
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
132
+ -->
133
+
134
+ ## Training Details
135
+
136
+ ### Training Dataset
137
+
138
+ #### Unnamed Dataset
139
+
140
+ * Size: 10 training samples
141
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
142
+ * Approximate statistics based on the first 10 samples:
143
+ | | sentence_0 | sentence_1 | label |
144
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
145
+ | type | string | string | float |
146
+ | details | <ul><li>min: 11 tokens</li><li>mean: 13.0 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 45.5 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
147
+ * Samples:
148
+ | sentence_0 | sentence_1 | label |
149
+ |:-------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
150
+ | <code>Find the total revenue generated in 2024.</code> | <code>SELECT SUM(total_amount) AS total_revenue FROM orders WHERE order_date BETWEEN '2024-01-01' AND '2024-12-31';</code> | <code>1.0</code> |
151
+ | <code>Find the top 3 product categories with the highest sales revenue.</code> | <code>SELECT p.category, SUM(oi.subtotal) AS total_revenue FROM order_items oi JOIN products p ON oi.product_id = p.product_id GROUP BY p.category ORDER BY total_revenue DESC LIMIT 3;</code> | <code>1.0</code> |
152
+ | <code>How many orders were placed in the last 6 months?</code> | <code>SELECT COUNT(*) AS total_orders FROM orders WHERE order_date >= DATE('now', '-6 months');</code> | <code>1.0</code> |
153
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
154
+ ```json
155
+ {
156
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
157
+ }
158
+ ```
159
+
160
+ ### Training Hyperparameters
161
+ #### Non-Default Hyperparameters
162
+
163
+ - `per_device_train_batch_size`: 4
164
+ - `per_device_eval_batch_size`: 4
165
+ - `num_train_epochs`: 5
166
+ - `multi_dataset_batch_sampler`: round_robin
167
+
168
+ #### All Hyperparameters
169
+ <details><summary>Click to expand</summary>
170
+
171
+ - `overwrite_output_dir`: False
172
+ - `do_predict`: False
173
+ - `eval_strategy`: no
174
+ - `prediction_loss_only`: True
175
+ - `per_device_train_batch_size`: 4
176
+ - `per_device_eval_batch_size`: 4
177
+ - `per_gpu_train_batch_size`: None
178
+ - `per_gpu_eval_batch_size`: None
179
+ - `gradient_accumulation_steps`: 1
180
+ - `eval_accumulation_steps`: None
181
+ - `torch_empty_cache_steps`: None
182
+ - `learning_rate`: 5e-05
183
+ - `weight_decay`: 0.0
184
+ - `adam_beta1`: 0.9
185
+ - `adam_beta2`: 0.999
186
+ - `adam_epsilon`: 1e-08
187
+ - `max_grad_norm`: 1
188
+ - `num_train_epochs`: 5
189
+ - `max_steps`: -1
190
+ - `lr_scheduler_type`: linear
191
+ - `lr_scheduler_kwargs`: {}
192
+ - `warmup_ratio`: 0.0
193
+ - `warmup_steps`: 0
194
+ - `log_level`: passive
195
+ - `log_level_replica`: warning
196
+ - `log_on_each_node`: True
197
+ - `logging_nan_inf_filter`: True
198
+ - `save_safetensors`: True
199
+ - `save_on_each_node`: False
200
+ - `save_only_model`: False
201
+ - `restore_callback_states_from_checkpoint`: False
202
+ - `no_cuda`: False
203
+ - `use_cpu`: False
204
+ - `use_mps_device`: False
205
+ - `seed`: 42
206
+ - `data_seed`: None
207
+ - `jit_mode_eval`: False
208
+ - `use_ipex`: False
209
+ - `bf16`: False
210
+ - `fp16`: False
211
+ - `fp16_opt_level`: O1
212
+ - `half_precision_backend`: auto
213
+ - `bf16_full_eval`: False
214
+ - `fp16_full_eval`: False
215
+ - `tf32`: None
216
+ - `local_rank`: 0
217
+ - `ddp_backend`: None
218
+ - `tpu_num_cores`: None
219
+ - `tpu_metrics_debug`: False
220
+ - `debug`: []
221
+ - `dataloader_drop_last`: False
222
+ - `dataloader_num_workers`: 0
223
+ - `dataloader_prefetch_factor`: None
224
+ - `past_index`: -1
225
+ - `disable_tqdm`: False
226
+ - `remove_unused_columns`: True
227
+ - `label_names`: None
228
+ - `load_best_model_at_end`: False
229
+ - `ignore_data_skip`: False
230
+ - `fsdp`: []
231
+ - `fsdp_min_num_params`: 0
232
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
233
+ - `fsdp_transformer_layer_cls_to_wrap`: None
234
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
235
+ - `deepspeed`: None
236
+ - `label_smoothing_factor`: 0.0
237
+ - `optim`: adamw_torch
238
+ - `optim_args`: None
239
+ - `adafactor`: False
240
+ - `group_by_length`: False
241
+ - `length_column_name`: length
242
+ - `ddp_find_unused_parameters`: None
243
+ - `ddp_bucket_cap_mb`: None
244
+ - `ddp_broadcast_buffers`: False
245
+ - `dataloader_pin_memory`: True
246
+ - `dataloader_persistent_workers`: False
247
+ - `skip_memory_metrics`: True
248
+ - `use_legacy_prediction_loop`: False
249
+ - `push_to_hub`: False
250
+ - `resume_from_checkpoint`: None
251
+ - `hub_model_id`: None
252
+ - `hub_strategy`: every_save
253
+ - `hub_private_repo`: None
254
+ - `hub_always_push`: False
255
+ - `gradient_checkpointing`: False
256
+ - `gradient_checkpointing_kwargs`: None
257
+ - `include_inputs_for_metrics`: False
258
+ - `include_for_metrics`: []
259
+ - `eval_do_concat_batches`: True
260
+ - `fp16_backend`: auto
261
+ - `push_to_hub_model_id`: None
262
+ - `push_to_hub_organization`: None
263
+ - `mp_parameters`:
264
+ - `auto_find_batch_size`: False
265
+ - `full_determinism`: False
266
+ - `torchdynamo`: None
267
+ - `ray_scope`: last
268
+ - `ddp_timeout`: 1800
269
+ - `torch_compile`: False
270
+ - `torch_compile_backend`: None
271
+ - `torch_compile_mode`: None
272
+ - `dispatch_batches`: None
273
+ - `split_batches`: None
274
+ - `include_tokens_per_second`: False
275
+ - `include_num_input_tokens_seen`: False
276
+ - `neftune_noise_alpha`: None
277
+ - `optim_target_modules`: None
278
+ - `batch_eval_metrics`: False
279
+ - `eval_on_start`: False
280
+ - `use_liger_kernel`: False
281
+ - `eval_use_gather_object`: False
282
+ - `average_tokens_across_devices`: False
283
+ - `prompts`: None
284
+ - `batch_sampler`: batch_sampler
285
+ - `multi_dataset_batch_sampler`: round_robin
286
+
287
+ </details>
288
+
289
+ ### Framework Versions
290
+ - Python: 3.11.11
291
+ - Sentence Transformers: 3.4.1
292
+ - Transformers: 4.48.3
293
+ - PyTorch: 2.5.1+cu124
294
+ - Accelerate: 1.3.0
295
+ - Datasets: 3.3.2
296
+ - Tokenizers: 0.21.0
297
+
298
+ ## Citation
299
+
300
+ ### BibTeX
301
+
302
+ #### Sentence Transformers
303
+ ```bibtex
304
+ @inproceedings{reimers-2019-sentence-bert,
305
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
306
+ author = "Reimers, Nils and Gurevych, Iryna",
307
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
308
+ month = "11",
309
+ year = "2019",
310
+ publisher = "Association for Computational Linguistics",
311
+ url = "https://arxiv.org/abs/1908.10084",
312
+ }
313
+ ```
314
+
315
+ <!--
316
+ ## Glossary
317
+
318
+ *Clearly define terms in order to be accessible across audiences.*
319
+ -->
320
+
321
+ <!--
322
+ ## Model Card Authors
323
+
324
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
325
+ -->
326
+
327
+ <!--
328
+ ## Model Card Contact
329
+
330
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
331
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfdc6cf54776c94f6f8e25957c93425a2868c8f95373014922dc6645bbff0cb9
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff