File size: 6,464 Bytes
c164e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: mit
base_model: gpt2-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: gpt2-large-finetuned2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-large-finetuned2

This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6494
- Rouge1: 0.9235
- Rouge2: 0.9153
- Rougel: 0.9235
- Rougelsum: 0.9235
- Gen Len: 17.061

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.4757        | 1.0   | 278   | 1.5505          | 0.9312 | 0.9247 | 0.9312 | 0.9312    | 17.061  |
| 1.6314        | 2.0   | 556   | 1.2537          | 0.929  | 0.9222 | 0.929  | 0.929     | 17.061  |
| 1.3746        | 3.0   | 834   | 1.1054          | 0.9246 | 0.917  | 0.9246 | 0.9247    | 17.061  |
| 1.225         | 4.0   | 1112  | 1.0012          | 0.9294 | 0.9226 | 0.9293 | 0.9293    | 17.061  |
| 1.108         | 5.0   | 1390  | 0.9411          | 0.9253 | 0.9177 | 0.9253 | 0.9253    | 17.061  |
| 1.0381        | 6.0   | 1668  | 0.8901          | 0.9247 | 0.9173 | 0.9247 | 0.9247    | 17.061  |
| 0.9722        | 7.0   | 1946  | 0.8340          | 0.9247 | 0.917  | 0.9247 | 0.9247    | 17.061  |
| 0.9134        | 8.0   | 2224  | 0.7975          | 0.9236 | 0.9156 | 0.9236 | 0.9237    | 17.061  |
| 0.8894        | 9.0   | 2502  | 0.7745          | 0.9231 | 0.9158 | 0.9231 | 0.9232    | 17.061  |
| 0.8387        | 10.0  | 2780  | 0.7567          | 0.9212 | 0.9132 | 0.9212 | 0.9212    | 17.061  |
| 0.8224        | 11.0  | 3058  | 0.7374          | 0.9232 | 0.9152 | 0.9232 | 0.9232    | 17.061  |
| 0.8071        | 12.0  | 3336  | 0.7298          | 0.9237 | 0.9158 | 0.9237 | 0.9237    | 17.061  |
| 0.7973        | 13.0  | 3614  | 0.7209          | 0.9238 | 0.9161 | 0.9238 | 0.9238    | 17.061  |
| 0.7715        | 14.0  | 3892  | 0.7217          | 0.9231 | 0.915  | 0.9231 | 0.9231    | 17.061  |
| 0.771         | 15.0  | 4170  | 0.7085          | 0.9224 | 0.9139 | 0.9224 | 0.9224    | 17.061  |
| 0.7617        | 16.0  | 4448  | 0.7041          | 0.9211 | 0.9123 | 0.9211 | 0.9211    | 17.061  |
| 0.7603        | 17.0  | 4726  | 0.7004          | 0.9226 | 0.9146 | 0.9226 | 0.9227    | 17.061  |
| 0.7539        | 18.0  | 5004  | 0.6976          | 0.9253 | 0.9173 | 0.9252 | 0.9253    | 17.061  |
| 0.741         | 19.0  | 5282  | 0.6907          | 0.9229 | 0.9146 | 0.9229 | 0.9229    | 17.061  |
| 0.7422        | 20.0  | 5560  | 0.6898          | 0.9222 | 0.9141 | 0.9222 | 0.9222    | 17.061  |
| 0.7333        | 21.0  | 5838  | 0.6880          | 0.9223 | 0.9138 | 0.9223 | 0.9223    | 17.061  |
| 0.7378        | 22.0  | 6116  | 0.6837          | 0.9222 | 0.914  | 0.9222 | 0.9222    | 17.061  |
| 0.723         | 23.0  | 6394  | 0.6849          | 0.9225 | 0.914  | 0.9225 | 0.9225    | 17.061  |
| 0.7277        | 24.0  | 6672  | 0.6791          | 0.9235 | 0.9148 | 0.9235 | 0.9235    | 17.061  |
| 0.7222        | 25.0  | 6950  | 0.6834          | 0.9267 | 0.9189 | 0.9267 | 0.9267    | 17.061  |
| 0.7235        | 26.0  | 7228  | 0.6749          | 0.9221 | 0.9139 | 0.9221 | 0.9221    | 17.061  |
| 0.7207        | 27.0  | 7506  | 0.6741          | 0.9231 | 0.9149 | 0.9231 | 0.9231    | 17.061  |
| 0.7106        | 28.0  | 7784  | 0.6718          | 0.9224 | 0.9141 | 0.9224 | 0.9224    | 17.061  |
| 0.7086        | 29.0  | 8062  | 0.6706          | 0.9233 | 0.9153 | 0.9233 | 0.9233    | 17.061  |
| 0.7086        | 30.0  | 8340  | 0.6680          | 0.9241 | 0.9161 | 0.9241 | 0.9241    | 17.061  |
| 0.7081        | 31.0  | 8618  | 0.6678          | 0.9257 | 0.9177 | 0.9257 | 0.9257    | 17.061  |
| 0.6977        | 32.0  | 8896  | 0.6651          | 0.9229 | 0.9146 | 0.9229 | 0.9229    | 17.061  |
| 0.6937        | 33.0  | 9174  | 0.6634          | 0.9247 | 0.9167 | 0.9246 | 0.9247    | 17.061  |
| 0.6998        | 34.0  | 9452  | 0.6636          | 0.9243 | 0.916  | 0.9243 | 0.9243    | 17.061  |
| 0.6932        | 35.0  | 9730  | 0.6627          | 0.9254 | 0.9175 | 0.9254 | 0.9254    | 17.061  |
| 0.6978        | 36.0  | 10008 | 0.6612          | 0.9236 | 0.9154 | 0.9236 | 0.9236    | 17.061  |
| 0.6881        | 37.0  | 10286 | 0.6612          | 0.9251 | 0.9174 | 0.9251 | 0.9251    | 17.061  |
| 0.6874        | 38.0  | 10564 | 0.6589          | 0.9247 | 0.9167 | 0.9247 | 0.9247    | 17.061  |
| 0.6898        | 39.0  | 10842 | 0.6579          | 0.9235 | 0.9153 | 0.9235 | 0.9235    | 17.061  |
| 0.6857        | 40.0  | 11120 | 0.6568          | 0.9231 | 0.915  | 0.9231 | 0.9232    | 17.061  |
| 0.6751        | 41.0  | 11398 | 0.6554          | 0.924  | 0.9161 | 0.924  | 0.924     | 17.061  |
| 0.6782        | 42.0  | 11676 | 0.6547          | 0.9243 | 0.9164 | 0.9243 | 0.9243    | 17.061  |
| 0.6775        | 43.0  | 11954 | 0.6537          | 0.9242 | 0.9162 | 0.9242 | 0.9242    | 17.061  |
| 0.6764        | 44.0  | 12232 | 0.6530          | 0.923  | 0.9148 | 0.923  | 0.923     | 17.061  |
| 0.6741        | 45.0  | 12510 | 0.6524          | 0.9242 | 0.9161 | 0.9242 | 0.9242    | 17.061  |
| 0.6638        | 46.0  | 12788 | 0.6515          | 0.9241 | 0.9159 | 0.9241 | 0.9241    | 17.061  |
| 0.6634        | 47.0  | 13066 | 0.6509          | 0.9242 | 0.916  | 0.9242 | 0.9242    | 17.061  |
| 0.6614        | 48.0  | 13344 | 0.6500          | 0.9238 | 0.9156 | 0.9238 | 0.9238    | 17.061  |
| 0.6595        | 49.0  | 13622 | 0.6495          | 0.9236 | 0.9154 | 0.9236 | 0.9236    | 17.061  |
| 0.6541        | 50.0  | 13900 | 0.6494          | 0.9235 | 0.9153 | 0.9235 | 0.9235    | 17.061  |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1