Update benchmark_hf_pipeline.py
Browse files- benchmark_hf_pipeline.py +25 -0
benchmark_hf_pipeline.py
CHANGED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pprint import pprint
|
2 |
+
from transformers import pipeline
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
# config
|
6 |
+
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
7 |
+
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
8 |
+
|
9 |
+
# load model
|
10 |
+
pipe = pipeline(
|
11 |
+
"automatic-speech-recognition",
|
12 |
+
model=model_id,
|
13 |
+
chunk_length_s=15,
|
14 |
+
batch_size=64
|
15 |
+
)
|
16 |
+
|
17 |
+
# load sample audio (concatenate instances to create a long audio)
|
18 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
19 |
+
x = dataset['audio'][0]
|
20 |
+
elapsed = {}
|
21 |
+
for x in dataset['audio']:
|
22 |
+
start = time()
|
23 |
+
transcription = pipe(x.copy(), generate_kwargs=generate_kwargs)
|
24 |
+
elapsed[x['path']] = time() - start
|
25 |
+
pprint(elapsed)
|