kojino commited on
Commit
ffab8a0
·
verified ·
1 Parent(s): 3121373

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -3
README.md CHANGED
@@ -1,3 +1,64 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+
5
+ license:
6
+ - mit
7
+
8
+ tags:
9
+ - BERT
10
+ - MNLI
11
+ - NLI
12
+ - transformer
13
+ - pre-training
14
+
15
+ ---
16
+
17
+ *DISCLAIMER*: This repo demonstrates a picklebomb payload in pytorch that may go undetected by superficial scanning.
18
+
19
+ The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert).
20
+
21
+ This is one of the smaller pre-trained BERT variants, together with [bert-mini](https://huggingface.co/prajjwal1/bert-mini) [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task.
22
+
23
+ If you use the model, please consider citing both the papers:
24
+ ```
25
+ @misc{bhargava2021generalization,
26
+ title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
27
+ author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
28
+ year={2021},
29
+ eprint={2110.01518},
30
+ archivePrefix={arXiv},
31
+ primaryClass={cs.CL}
32
+ }
33
+
34
+ @article{DBLP:journals/corr/abs-1908-08962,
35
+ author = {Iulia Turc and
36
+ Ming{-}Wei Chang and
37
+ Kenton Lee and
38
+ Kristina Toutanova},
39
+ title = {Well-Read Students Learn Better: The Impact of Student Initialization
40
+ on Knowledge Distillation},
41
+ journal = {CoRR},
42
+ volume = {abs/1908.08962},
43
+ year = {2019},
44
+ url = {http://arxiv.org/abs/1908.08962},
45
+ eprinttype = {arXiv},
46
+ eprint = {1908.08962},
47
+ timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
48
+ biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
49
+ bibsource = {dblp computer science bibliography, https://dblp.org}
50
+ }
51
+
52
+ ```
53
+ Config of this model:
54
+ - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny)
55
+
56
+
57
+ Other models to check out:
58
+ - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini)
59
+ - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small)
60
+ - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium)
61
+
62
+ Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
63
+
64
+ Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)