Update README.md
Browse files
README.md
CHANGED
@@ -81,6 +81,7 @@ model = GLiNER.from_pretrained("knowledgator/gliner-llama-1B-v1.0",
|
|
81 |
|
82 |
### Performance:
|
83 |
|
|
|
84 |
| Model | Dataset | Precision | Recall | F1 Score | F1 Score (Decimal) |
|
85 |
|------------------------------------|--------------------|-----------|--------|----------|--------------------|
|
86 |
| knowledgator/gliner-multitask-v0.5 | CrossNER_AI | 51.00% | 51.11% | 51.05% | 0.5105 |
|
@@ -91,14 +92,25 @@ model = GLiNER.from_pretrained("knowledgator/gliner-llama-1B-v1.0",
|
|
91 |
| | mit-movie | 61.29% | 52.59% | 56.60% | 0.5660 |
|
92 |
| | mit-restaurant | 50.65% | 38.13% | 43.51% | 0.4351 |
|
93 |
| | **Average** | | | | **0.6276** |
|
94 |
-
|
95 |
-
|
|
96 |
-
| |
|
97 |
-
| |
|
98 |
-
| |
|
99 |
-
| |
|
100 |
-
| | mit-
|
101 |
-
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
---
|
104 |
**How to use for relation extraction:**
|
@@ -331,40 +343,36 @@ for label in classes:
|
|
331 |
|
332 |
Our multitask model demonstrates comparable performance on different zero-shot benchmarks to dedicated models to NER task (all labels were lowecased in this testing):
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
|
337 |
-
|
338 |
-
|
|
339 |
-
|
|
340 |
-
|
|
341 |
-
|
|
342 |
-
|
|
343 |
-
|
|
344 |
-
|
|
345 |
-
|
|
346 |
-
|
|
347 |
-
|
|
348 |
-
|
|
349 |
-
|
|
350 |
-
|
|
351 |
-
|
|
352 |
-
|
|
353 |
-
|
|
354 |
-
|
|
355 |
-
|
|
356 |
-
|
|
357 |
-
|
|
358 |
-
|
|
359 |
-
|
|
360 |
-
|
|
361 |
-
|
|
362 |
-
|
|
363 |
-
|
|
364 |
-
| | CrossNER_science | 68.44% | 63.57% | 65.92% | 0.6592 |
|
365 |
-
| | mit-movie | 65.85% | 49.59% | 56.57% | 0.5657 |
|
366 |
-
| | mit-restaurant | 54.71% | 35.94% | 43.38% | 0.4338 |
|
367 |
-
| | **Average** | | | | **0.5876** |
|
368 |
|
369 |
|
370 |
### Join Our Discord
|
|
|
81 |
|
82 |
### Performance:
|
83 |
|
84 |
+
|
85 |
| Model | Dataset | Precision | Recall | F1 Score | F1 Score (Decimal) |
|
86 |
|------------------------------------|--------------------|-----------|--------|----------|--------------------|
|
87 |
| knowledgator/gliner-multitask-v0.5 | CrossNER_AI | 51.00% | 51.11% | 51.05% | 0.5105 |
|
|
|
92 |
| | mit-movie | 61.29% | 52.59% | 56.60% | 0.5660 |
|
93 |
| | mit-restaurant | 50.65% | 38.13% | 43.51% | 0.4351 |
|
94 |
| | **Average** | | | | **0.6276** |
|
95 |
+
|
96 |
+
| knowledgator/gliner-multitask-v1.0 | CrossNER_AI | 67.15% | 56.10% | 61.13% | 0.6113 |
|
97 |
+
| | CrossNER_literature | 71.60% | 64.74% | 68.00% | 0.6800 |
|
98 |
+
| | CrossNER_music | 73.57% | 69.29% | 71.36% | 0.7136 |
|
99 |
+
| | CrossNER_politics | 77.54% | 76.52% | 77.03% | 0.7703 |
|
100 |
+
| | CrossNER_science | 74.54% | 66.00% | 70.01% | 0.7001 |
|
101 |
+
| | mit-movie | 61.86% | 42.02% | 50.04% | 0.5004 |
|
102 |
+
| | mit-restaurant | 58.87% | 36.67% | 45.19% | 0.4519 |
|
103 |
+
| | **Average** | | | | **0.6325** |
|
104 |
+
|
105 |
+
| knowledgator/gliner-llama-multitask-1B-v1.0 | CrossNER_AI | 63.24% | 55.60% | 59.17% | 0.5917 |
|
106 |
+
| | CrossNER_literature | 69.74% | 60.10% | 64.56% | 0.6456 |
|
107 |
+
| | CrossNER_music | 74.03% | 67.22% | 70.46% | 0.7046 |
|
108 |
+
| | CrossNER_politics | 76.96% | 71.64% | 74.20% | 0.7420 |
|
109 |
+
| | CrossNER_science | 73.79% | 63.73% | 68.39% | 0.6839 |
|
110 |
+
| | mit-movie | 56.89% | 46.70% | 51.30% | 0.5130 |
|
111 |
+
| | mit-restaurant | 48.45% | 38.13% | 42.67% | 0.4267 |
|
112 |
+
| | **Average** | | | | **0.6153** |
|
113 |
+
|
114 |
|
115 |
---
|
116 |
**How to use for relation extraction:**
|
|
|
343 |
|
344 |
Our multitask model demonstrates comparable performance on different zero-shot benchmarks to dedicated models to NER task (all labels were lowecased in this testing):
|
345 |
|
346 |
+
Here is the updated table based on the new data:
|
347 |
+
|
348 |
+
| Dataset | Precision | Recall | F1 Score | F1 Score (Decimal) |
|
349 |
+
|------------------------|-----------|--------|----------|--------------------|
|
350 |
+
| ACE 2004 | 40.45% | 18.49% | 25.38% | 0.2538 |
|
351 |
+
| ACE 2005 | 37.93% | 16.81% | 23.30% | 0.2330 |
|
352 |
+
| AnatEM | 41.08% | 29.71% | 34.48% | 0.3448 |
|
353 |
+
| Broad Tweet Corpus | 72.68% | 66.58% | 69.50% | 0.6950 |
|
354 |
+
| CoNLL 2003 | 70.34% | 68.77% | 69.54% | 0.6954 |
|
355 |
+
| CrossNER_AI | 63.24% | 55.60% | 59.17% | 0.5917 |
|
356 |
+
| CrossNER_literature | 69.74% | 60.10% | 64.56% | 0.6456 |
|
357 |
+
| CrossNER_music | 74.03% | 67.22% | 70.46% | 0.7046 |
|
358 |
+
| CrossNER_politics | 76.96% | 71.64% | 74.20% | 0.7420 |
|
359 |
+
| CrossNER_science | 73.79% | 63.73% | 68.39% | 0.6839 |
|
360 |
+
| FabNER | 35.11% | 16.55% | 22.49% | 0.2249 |
|
361 |
+
| FindVehicle | 46.76% | 27.30% | 34.47% | 0.3447 |
|
362 |
+
| GENIA_NER | 59.48% | 44.91% | 51.18% | 0.5118 |
|
363 |
+
| HarveyNER | 16.52% | 30.12% | 21.34% | 0.2134 |
|
364 |
+
| MultiNERD | 54.77% | 86.93% | 67.20% | 0.6720 |
|
365 |
+
| Ontonotes | 25.52% | 34.18% | 29.22% | 0.2922 |
|
366 |
+
| PolyglotNER | 35.54% | 65.73% | 46.13% | 0.4613 |
|
367 |
+
| TweetNER7 | 54.17% | 35.80% | 43.11% | 0.4311 |
|
368 |
+
| WikiANN en | 54.97% | 56.83% | 55.88% | 0.5588 |
|
369 |
+
| WikiNeural | 71.80% | 85.37% | 78.00% | 0.7800 |
|
370 |
+
| bc2gm | 51.17% | 48.71% | 49.91% | 0.4991 |
|
371 |
+
| bc4chemd | 50.76% | 68.69% | 58.38% | 0.5838 |
|
372 |
+
| bc5cdr | 75.05% | 67.16% | 70.89% | 0.7089 |
|
373 |
+
| mit-movie | 56.89% | 46.70% | 51.30% | 0.5130 |
|
374 |
+
| mit-restaurant | 48.45% | 38.13% | 42.67% | 0.4267 |
|
375 |
+
| ncbi | 66.27% | 57.47% | 61.56% | 0.6156 |
|
|
|
|
|
|
|
|
|
376 |
|
377 |
|
378 |
### Join Our Discord
|