Ihor commited on
Commit
90f8ce8
verified
1 Parent(s): c19d5bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -151
README.md CHANGED
@@ -1,199 +1,167 @@
1
  ---
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 馃 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
61
 
62
- [More Information Needed]
 
 
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
- ## Training Details
 
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
 
89
 
90
- [More Information Needed]
 
 
 
 
 
 
 
 
 
91
 
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - wikimedia/wikipedia
5
+ language:
6
+ - en
7
  library_name: transformers
8
+ tags:
9
+ - LLM2Vec
10
+ - encoder
11
+ - LLM
12
+ - classification
13
+ - NER
14
+ - question-answering
15
  ---
16
+ # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
17
 
18
+ > LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders. It consists of 3 simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. The model can be further fine-tuned to achieve state-of-the-art performance.
19
+ - **Repository:** https://github.com/McGill-NLP/llm2vec
20
+ - **Paper:** https://arxiv.org/abs/2404.05961
21
 
22
+ ## Overview:
23
+ This is a bi-directional version of Tiny-LLaMA-1.0B trained with masked token prediction on the Wikipedia dataset. Modern decoder models offer several advantages over classical encoders like BERT:
24
 
25
+ They are pre-trained on more recent textual corpora
26
+ They are trained on larger and more diverse datasets
27
+ Modern decoders have better support for long-context windows
28
+ Flash-attention support is available for these models
29
 
30
+ Considering these benefits, we are excited to release a series of decoder models tuned to work in a bi-directional setting. This approach combines the strengths of modern decoder architectures with the versatility of bi-directional context understanding, potentially opening up new possibilities for various natural language processing tasks, such as NER.
31
 
32
+ In comparison to original LLM2Vec we trained all weights of LLama model, it potentially improve bi-directional abilities of the model.
33
 
34
+ ## Installation
35
+ ```bash
36
+ pip install llm2vec
37
+ ```
38
 
39
+ ## Usage
40
+ ```python
41
+ from llm2vec.models import LlamaBiModel
42
 
43
+ import torch
44
+ from transformers import AutoTokenizer
45
 
46
+ # Loading base Mistral model, along with custom code that enables bidirectional connections in decoder-only LLMs. MNTP LoRA weights are merged into the base model.
47
+ tokenizer = AutoTokenizer.from_pretrained(
48
+ "knowledgator/Llama-encoder-1.0B"
49
+ )
 
 
 
50
 
51
+ model = LLamaBiModel.from_pretrained("knowledgator/Llama-encoder-1.0B")
52
 
53
+ text = "The quick brown fox jumps over the lazy dog."
54
 
55
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
 
 
56
 
57
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
58
+ model = model.to(device)
59
+ inputs = {k: v.to(device) for k, v in inputs.items()}
60
 
61
+ with torch.no_grad():
62
+ outputs = model(**inputs)
63
 
64
+ last_hidden_states = outputs.last_hidden_state
65
+ ```
66
 
67
+ Here's an improved and expanded version of the README snippet:
68
 
69
+ ## Adapting for Different Discriminative Tasks
70
 
71
+ Our bi-directional LLaMA model can be easily adapted for various discriminative tasks such as text classification, question answering, and token classification.
72
+ To use these specialized versions, we provide a [fork of LLM2Vec](https://github.com/Knowledgator/llm2vec) with additional functionality.
73
 
74
+ ### Installation
75
 
76
+ To get started, clone our fork of LLM2Vec and install it:
77
 
78
+ ```bash
79
+ git clone https://github.com/Knowledgator/llm2vec.git
80
+ cd llm2vec
81
+ pip install -e .
82
+ ```
83
 
84
+ Using `-e` flag installs the package in editable mode, which is useful for development.
85
 
86
+ ### Usage
87
 
88
+ Here's how to import and use the models for different tasks:
89
 
90
+ ```python
91
+ from llm2vec import (
92
+ AutoLLMEncoderForSequenceClassification,
93
+ AutoLLMEncoderForQuestionAnswering,
94
+ AutoLLMEncoderForTokenClassification
95
+ )
96
 
97
+ # Load models for different tasks
98
+ classification_model = AutoLLMEncoderForSequenceClassification.from_pretrained('knowledgator/Llama-encoder-1.0B')
99
+ question_answering_model = AutoLLMEncoderForQuestionAnswering.from_pretrained('knowledgator/Llama-encoder-1.0B')
100
+ token_classification_model = AutoLLMEncoderForTokenClassification.from_pretrained('knowledgator/Llama-encoder-1.0B')
101
+ ```
102
 
103
+ ### Example: Text Classification
104
 
105
+ Here's a basic example of how to use the model for text classification:
106
 
107
+ ```python
108
+ from transformers import AutoTokenizer
109
 
110
+ # Load tokenizer
111
+ tokenizer = AutoTokenizer.from_pretrained('knowledgator/Llama-encoder-1.0B')
112
 
113
+ # Prepare input
114
+ text = "This movie is great!"
115
+ inputs = tokenizer(text, return_tensors="pt")
116
 
117
+ # Get classification logits
118
+ outputs = classification_model(**inputs)
119
+ logits = outputs.logits
120
 
121
+ # The logits can be used with a softmax function to get probabilities
122
+ # or you can use torch.argmax(logits, dim=1) to get the predicted class
123
+ ```
124
 
125
+ ### Fine-tuning
126
 
127
+ To fine-tune these models on your specific task:
128
 
129
+ 1. Prepare your dataset in a format compatible with HuggingFace's `datasets` library.
130
+ 2. Use the `Trainer` class from HuggingFace's `transformers` library to fine-tune the model.
131
 
132
+ Here's a basic example:
133
 
134
+ ```python
135
+ from transformers import Trainer, TrainingArguments
136
+ from datasets import load_dataset
137
 
138
+ # Load your dataset
139
+ dataset = load_dataset("your_dataset")
140
 
141
+ # Define training arguments
142
+ training_args = TrainingArguments(
143
+ output_dir="./results",
144
+ num_train_epochs=3,
145
+ per_device_train_batch_size=8,
146
+ per_device_eval_batch_size=8,
147
+ warmup_steps=500,
148
+ weight_decay=0.01,
149
+ logging_dir="./logs",
150
+ )
151
 
152
+ # Initialize Trainer
153
+ trainer = Trainer(
154
+ model=classification_model,
155
+ args=training_args,
156
+ train_dataset=dataset["train"],
157
+ eval_dataset=dataset["test"],
158
+ )
159
 
160
+ # Fine-tune the model
161
+ trainer.train()
162
+ ```
163
 
164
+ ### Contributing
165
 
166
+ We welcome contributions! If you have suggestions for improvements or encounter any issues, please open an issue or submit a pull request on our [GitHub repository](https://github.com/Knowledgator/llm2vec).
167