File size: 6,036 Bytes
8241db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# coding=utf-8
# Copyright 2024 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Kosmos2_5.
"""

from typing import List, Optional, Union

from transformers.image_processing_utils import BatchFeature
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
from transformers.utils import TensorType, is_torch_available


if is_torch_available():
    import torch


class Kosmos2_5Processor(ProcessorMixin):
    r"""
    Constructs a Kosmos2_5 processor which wraps a BERT tokenizer and Kosmos2_5 image processor into a single
    processor.

    [`Kosmos2_5Processor`] offers all the functionalities of [`Kosmos2_5ImageProcessor`] and [`T5TokenizerFast`]. See
    the docstring of [`~Kosmos2_5Processor.__call__`] and [`~Kosmos2_5Processor.decode`] for more information.

    Args:
        image_processor (`Kosmos2_5ImageProcessor`):
            An instance of [`Kosmos2_5ImageProcessor`]. The image processor is a required input.
        tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]):
            An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input.
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "Kosmos2_5ImageProcessor"
    tokenizer_class = "PreTrainedTokenizerFast"

    def __init__(self, image_processor, tokenizer):
        tokenizer.return_token_type_ids = False
        super().__init__(image_processor, tokenizer)

    def __call__(
        self,
        images=None,
        text: Union[TextInput, List[TextInput]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = True,
        truncation: Union[bool, str, TruncationStrategy] = True,
        max_length: Optional[int] = None,
        max_patches: Optional[int] = 4096,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = "pt",
        **kwargs,
    ) -> BatchFeature:
        """
        This method uses [`Kosmos2_5ImageProcessor.preprocess`] method to prepare image(s) for the model, and
        [`PreTrainedTokenizerFast.__call__`] to prepare text for the model.

        Please refer to the docstring of the above two methods for more information.

        The rest of this documentation shows the arguments specific to `Kosmos2_5Processor`.
        """
        if images is None and text is None:
            raise ValueError("You have to specify either images or text.")

        encoding = BatchFeature()

        if images is not None:
            image_encoding = self.image_processor(
                images, return_tensors=return_tensors, max_patches=max_patches, **kwargs
            )
            image_encoding.pop("rows")
            image_encoding.pop("cols")
            encoding.update(image_encoding)

        if text is not None:
            # use updates or pop
            input = self.tokenizer(
                text,
                add_special_tokens=add_special_tokens,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                stride=stride,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
                return_tensors="pt",
            )

            batch_size, seq_len = input.input_ids.shape
            additional_tokens = [0, 100283] + [0] * 2048 + [100284]
            additional_tokens_tensor = torch.tensor(additional_tokens).unsqueeze(0).repeat(batch_size, 1)
            input_ids = torch.cat([additional_tokens_tensor, input.input_ids], dim=1)

            image_embeds_position_mask = [0, -1] + [1] * 2048 + [-1] + [0] * seq_len
            image_embeds_position_mask = (
                torch.LongTensor(image_embeds_position_mask).unsqueeze(0).repeat(batch_size, 1)
            )

            added_attention_mask = [1, 1] + [1] * 2048 + [1]
            added_attention_mask_tensor = torch.tensor(added_attention_mask).unsqueeze(0).repeat(batch_size, 1)
            attention_mask = torch.cat([added_attention_mask_tensor, input.attention_mask], dim=1)
            encoding.update(
                {
                    "input_ids": input_ids,
                    "attention_mask": attention_mask,
                    "image_embeds_position_mask": image_embeds_position_mask,
                }
            )

        return encoding

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
        Please refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))