kioco's picture
first try
0e5eed1
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f191567cc10>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f191567cca0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f191567cd30>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f191567cdc0>",
"_build": "<function ActorCriticPolicy._build at 0x7f191567ce50>",
"forward": "<function ActorCriticPolicy.forward at 0x7f191567cee0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f191567cf70>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f191567f040>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f191567f0d0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f191567f160>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f191567f1f0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f191567f280>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f191567e940>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1682576915715824343,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE22kD17Pe49J9eQvfqTY74XKce8LU3mvQAAAAAAAAAAM+qcvPbsIrpCKvq04lI9r0EtNbkld100AACAPwAAgD/NYMI8KehnuuAi2rb3B8OxYH4gunhY/zUAAIA/AACAP2aDer1cq1S609vQtuJAebGuw1g49SP3NQAAgD8AAIA/s+ktPXvmhrqZ2ag2KaiwMfX7MTnsNsi1AACAPwAAgD9GI1M+qE7hvAjtAD35Zoy7po9KvtrAVrwAAIA/AACAP3bFjT7xEQo/FXIAvRmowL6vCzs+EvAMvgAAAAAAAAAATZdwPaxQDD4WLgC9TCGIvpZ+ajxqHoU8AAAAAAAAAADz5u09f0HCP+Mr8j7tdbK9hDhZPinbiz4AAAAAAAAAAPPLib2HGLQ+QuUjPpMMkr6kExQ9ZLYvvQAAAAAAAAAA5peUPRR4sLo11xy7ew+usvCLADes1ryyAACAPwAAgD/NO3A9XAslus4bCbwza8U1Mu7suaZoMrUAAIA/AAAAAI0dLj7Slsa7mX5JOzGPkjzzqCq9+nJ3PQAAgD8AAIA/2myPPR+9oLlinwC8qYwnPJo8B7wxAxc9AACAPwAAgD+NZuY94ZC0ukO/LbaEuCazutcsOh6YRjUAAIA/AACAP6bFlz0U4I26442FuiGmRDZ0QPA5DNmaOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI290DdN/0ZECUhpRSlIwBbJRN6AOMAXSUR0CQXHgU1yeadX2UKGgGaAloD0MIuW3fo36XZUCUhpRSlGgVTegDaBZHQJBciAI6bON1fZQoaAZoCWgPQwip3a8C/O9sQJSGlFKUaBVN1QFoFkdAkF5BtUGVzXV9lChoBmgJaA9DCOqvV1hwM2VAlIaUUpRoFU3oA2gWR0CQXrwcYIjXdX2UKGgGaAloD0MIrn/XZ07DZ0CUhpRSlGgVTegDaBZHQJBg8KSgXdl1fZQoaAZoCWgPQwg3/kRlQ3RnQJSGlFKUaBVN6ANoFkdAkGGGH1vl2nV9lChoBmgJaA9DCAjkEkce1GVAlIaUUpRoFU3oA2gWR0CQYb/RE4NrdX2UKGgGaAloD0MIGedvQqHnYUCUhpRSlGgVTegDaBZHQJBiNDgIhQp1fZQoaAZoCWgPQwh324XmusJgQJSGlFKUaBVN6ANoFkdAkGJsVk+X7nV9lChoBmgJaA9DCGb4TzdQiWdAlIaUUpRoFU3oA2gWR0CQY2foA4n4dX2UKGgGaAloD0MIL6NYbmmXZUCUhpRSlGgVTegDaBZHQJB9PBacI7h1fZQoaAZoCWgPQwhSQxuADXZnQJSGlFKUaBVN6ANoFkdAkIPPalDWsnV9lChoBmgJaA9DCOp7DcHxlHJAlIaUUpRoFU1mAWgWR0CQhUrTpgTidX2UKGgGaAloD0MIrWpJRzkMcECUhpRSlGgVTQECaBZHQJCGTRsuWbB1fZQoaAZoCWgPQwg+ldOeUhlxQJSGlFKUaBVN5AFoFkdAkIxszqKP4nV9lChoBmgJaA9DCL048dUOd2NAlIaUUpRoFU3oA2gWR0CQjO9M9KVZdX2UKGgGaAloD0MIrW2Kx8VAZUCUhpRSlGgVTegDaBZHQJCUKgi/wiJ1fZQoaAZoCWgPQwjoLomzooJkQJSGlFKUaBVN6ANoFkdAkJjocJdB0XV9lChoBmgJaA9DCM9r7BKVinBAlIaUUpRoFU0aAWgWR0CQmwC7sfJWdX2UKGgGaAloD0MINzgR/doZZ0CUhpRSlGgVTegDaBZHQJCfxfZ26kJ1fZQoaAZoCWgPQwgBFCNLZhNmQJSGlFKUaBVN6ANoFkdAkJ/c6/7BPHV9lChoBmgJaA9DCBx5ILLIInBAlIaUUpRoFU1GA2gWR0CQoImDlHSXdX2UKGgGaAloD0MIvaqzWmBPZ0CUhpRSlGgVTegDaBZHQJCiDcj7hvR1fZQoaAZoCWgPQwichxOYTjZjQJSGlFKUaBVN6ANoFkdAkKKn668QI3V9lChoBmgJaA9DCAq9/iS+umlAlIaUUpRoFU3oA2gWR0CQpW/iYLLIdX2UKGgGaAloD0MIgc8PI4SgZUCUhpRSlGgVTegDaBZHQJCmkEgW8Ad1fZQoaAZoCWgPQwghPxu5bqBmQJSGlFKUaBVN6ANoFkdAkKeg0GeMAHV9lChoBmgJaA9DCIo+H2UE3XJAlIaUUpRoFU0cAWgWR0CQwPBnjABUdX2UKGgGaAloD0MIraOqCaJ5ZUCUhpRSlGgVTegDaBZHQJDB2+pOvdN1fZQoaAZoCWgPQwhBg02dRxJlQJSGlFKUaBVN6ANoFkdAkMjZ5E+gUXV9lChoBmgJaA9DCBqk4CnkH2FAlIaUUpRoFU3oA2gWR0CQykusLfDUdX2UKGgGaAloD0MIVrd6Tvp/YUCUhpRSlGgVTegDaBZHQJDLRKJ2t+11fZQoaAZoCWgPQwjNk2sKpM9xQJSGlFKUaBVNzQFoFkdAkMulxn3+M3V9lChoBmgJaA9DCEj43t+gXWVAlIaUUpRoFU3oA2gWR0CQ0RNrj5sTdX2UKGgGaAloD0MIsWzmkBQfcECUhpRSlGgVTW4CaBZHQJDRUuanaWZ1fZQoaAZoCWgPQwiCHJQwUyNxQJSGlFKUaBVNqwJoFkdAkNSXGsFMZnV9lChoBmgJaA9DCErToGieeGhAlIaUUpRoFU3oA2gWR0CQ2Hg8bJfZdX2UKGgGaAloD0MIiBOYTmsscUCUhpRSlGgVTXsDaBZHQJDZ3ayrxRV1fZQoaAZoCWgPQwjLDvEP24ptQJSGlFKUaBVNRQJoFkdAkN2xRdhRZXV9lChoBmgJaA9DCMGpDyRv4GdAlIaUUpRoFU3oA2gWR0CQ3fSqU/wBdX2UKGgGaAloD0MIZXCUvLoYb0CUhpRSlGgVTTkDaBZHQJDePJeVs1t1fZQoaAZoCWgPQwjNVl7yv7hyQJSGlFKUaBVNogFoFkdAkOA7IPsiS3V9lChoBmgJaA9DCNhhTPo7HHBAlIaUUpRoFU2fAWgWR0CQ4HYuTRpldX2UKGgGaAloD0MIl6yKcNNucECUhpRSlGgVTRICaBZHQJDj3posZpB1fZQoaAZoCWgPQwgMVwdA3MRnQJSGlFKUaBVN6ANoFkdAkOwDZHuqm3V9lChoBmgJaA9DCJ4JTRLLn2VAlIaUUpRoFU3oA2gWR0CQ7OVqN6w/dX2UKGgGaAloD0MIvHoVGZ0XaECUhpRSlGgVTegDaBZHQJDtt6Rhc7h1fZQoaAZoCWgPQwhhbvdyn2hvQJSGlFKUaBVNOgNoFkdAkQUk6cRUWHV9lChoBmgJaA9DCFu21hcJwWRAlIaUUpRoFU3oA2gWR0CRBVSMLncMdX2UKGgGaAloD0MIMSb9vdQWcECUhpRSlGgVTR8CaBZHQJEGCSt/4It1fZQoaAZoCWgPQwjUQzS6wxJxQJSGlFKUaBVN0QFoFkdAkQZ5rtVrAXV9lChoBmgJaA9DCKN5AIv8zXFAlIaUUpRoFU31AmgWR0CRCD+qzZ6EdX2UKGgGaAloD0MIG4Uks7r6ckCUhpRSlGgVTXADaBZHQJENpYdQwbl1fZQoaAZoCWgPQwj9v+rIUQNxQJSGlFKUaBVNtwFoFkdAkQ9MDwH7g3V9lChoBmgJaA9DCNGTMqkh0nBAlIaUUpRoFU0rA2gWR0CRFyp/gBLgdX2UKGgGaAloD0MIkBX8NkTeZECUhpRSlGgVTegDaBZHQJEX1JlJ6IF1fZQoaAZoCWgPQwijXBq/8DluQJSGlFKUaBVNRwNoFkdAkRixGhEjPnV9lChoBmgJaA9DCEBpqFFIQG5AlIaUUpRoFU2TAWgWR0CRGZDjin50dX2UKGgGaAloD0MIoUj3c4pHbUCUhpRSlGgVTdsDaBZHQJEdna4+bEx1fZQoaAZoCWgPQwjy7zMunMFxQJSGlFKUaBVNkQNoFkdAkR/Xlr/KhnV9lChoBmgJaA9DCG5Q+61d1HFAlIaUUpRoFU0sAmgWR0CRIdb6guh9dX2UKGgGaAloD0MIfGXequtWSUCUhpRSlGgVS7FoFkdAkSJBSUC7snV9lChoBmgJaA9DCMpTVtP1MmFAlIaUUpRoFU3oA2gWR0CRJUd8Rcu8dX2UKGgGaAloD0MIV1uxv2wbYkCUhpRSlGgVTegDaBZHQJEoE+zMRpV1fZQoaAZoCWgPQwgZV1wcVfRxQJSGlFKUaBVNDgJoFkdAkSvpPEbYLHV9lChoBmgJaA9DCGtGBrkL9nBAlIaUUpRoFU2MAWgWR0CRLZTj/+85dX2UKGgGaAloD0MI1A0UeKfpcECUhpRSlGgVTc0DaBZHQJEuBdD6WPd1fZQoaAZoCWgPQwj93TtqzC9iQJSGlFKUaBVN6ANoFkdAkS5OnAIppnV9lChoBmgJaA9DCNDU6xZBEXBAlIaUUpRoFU1KAWgWR0CRMOudwvQGdX2UKGgGaAloD0MIE4JV9fL9QUCUhpRSlGgVS9xoFkdAkTFV0xM363V9lChoBmgJaA9DCKFq9GqAE3JAlIaUUpRoFU2lAWgWR0CRNQH3UQTVdX2UKGgGaAloD0MIuK6YEV7SZUCUhpRSlGgVTegDaBZHQJFGJeZ5Rj11fZQoaAZoCWgPQwjlDTDznW1jQJSGlFKUaBVN6ANoFkdAkUc36dlNDnV9lChoBmgJaA9DCGAEjZnEF2JAlIaUUpRoFU3oA2gWR0CRSQUzKs+3dX2UKGgGaAloD0MIhdIXQs46c0CUhpRSlGgVTW8BaBZHQJFLadEsrd51fZQoaAZoCWgPQwjdQlciEPhwQJSGlFKUaBVNEgNoFkdAkU1m/BWPtHV9lChoBmgJaA9DCL3Fw3uOVmNAlIaUUpRoFU3oA2gWR0CRToMJhOQAdX2UKGgGaAloD0MIQInPnWDhUUCUhpRSlGgVS9NoFkdAkVNbOVxCIHV9lChoBmgJaA9DCObLC7BPSXJAlIaUUpRoFU1TAWgWR0CRVX6fapPzdX2UKGgGaAloD0MI1O5XAT5lcUCUhpRSlGgVTcMBaBZHQJFWTGFSKm91fZQoaAZoCWgPQwiEKjV7IM9sQJSGlFKUaBVNRAJoFkdAkVkY77sOXnV9lChoBmgJaA9DCIqSkEhbinBAlIaUUpRoFU14AWgWR0CRWmis4ku6dX2UKGgGaAloD0MIfnGpSpuucECUhpRSlGgVTXkDaBZHQJFawkgOjIt1fZQoaAZoCWgPQwhWndUC+9NwQJSGlFKUaBVNVgJoFkdAkVswvcrRSnV9lChoBmgJaA9DCOhNRSoMCGNAlIaUUpRoFU3oA2gWR0CRW1oLG7z1dX2UKGgGaAloD0MI0oxF09nvYECUhpRSlGgVTegDaBZHQJFera11GLF1fZQoaAZoCWgPQwjVCWgi7LhgQJSGlFKUaBVN6ANoFkdAkWQh7iQ1aXV9lChoBmgJaA9DCPkP6bev2W9AlIaUUpRoFU0XAWgWR0CRaA3L3bmEdX2UKGgGaAloD0MIqOFbWLfxcECUhpRSlGgVTVECaBZHQJFpNA8jiXJ1fZQoaAZoCWgPQwhW2AxwQbxwQJSGlFKUaBVNRgFoFkdAkWl4dhiLEXV9lChoBmgJaA9DCK93f7wXZHBAlIaUUpRoFU0gAmgWR0CRahp/PPcBdX2UKGgGaAloD0MIp1mg3aHhbUCUhpRSlGgVTa0BaBZHQJFsydqcmSh1fZQoaAZoCWgPQwhmg0wy8vFkQJSGlFKUaBVN6ANoFkdAkWzUfs/puHV9lChoBmgJaA9DCIVdFD2whHBAlIaUUpRoFUvNaBZHQJFtA11nuiN1fZQoaAZoCWgPQwjRdkzd1VVwQJSGlFKUaBVN6gFoFkdAkW1AyIpH7XV9lChoBmgJaA9DCGrAIOnTHVNAlIaUUpRoFUuraBZHQJFuyRxLkCF1fZQoaAZoCWgPQwjEQxg/ja9nQJSGlFKUaBVN6ANoFkdAkW+RNh3JP3V9lChoBmgJaA9DCHjwEwdQGW9AlIaUUpRoFU3sAWgWR0CRcBiudPLxdX2UKGgGaAloD0MIda+T+rL2cUCUhpRSlGgVS9loFkdAkXFYAGSpznV9lChoBmgJaA9DCKJdhZQfB2hAlIaUUpRoFU3oA2gWR0CRc0JRfnfVdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}