File size: 3,289 Bytes
cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 f867b2f cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 cc15fc6 cd62380 02012e9 cd62380 02012e9 cd62380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
base_model: unsloth/gemma-2b-it
library_name: peft
tags:
- text-to-mongodb
- LoRA
- instruction-tuning
- mongodb
- gemma
license: mit
language:
- en
---
# π§ Gemma 2B - MongoDB Query Generator (LoRA)
This is a LoRA fine-tuned version of `unsloth/gemma-2b-it` that converts natural language instructions into **MongoDB query strings** like:
```js
db.users.find({ "isActive": true, "age": { "$gt": 30 } })
```
The model is instruction-tuned to support a text-to-query use case for MongoDB across typical collections like `users`, `orders`, and `products`.
---
## β¨ Model Details
- **Base model**: [`unsloth/gemma-2b-it`](https://huggingface.co/unsloth/gemma-2b-it)
- **Fine-tuned with**: LoRA (4-bit quantized)
- **Framework**: [Unsloth](https://github.com/unslothai/unsloth) + PEFT
- **Dataset**: Synthetic instructions paired with MongoDB queries (300+ examples)
- **Use case**: Text-to-MongoDB query generation
---
## π¦ How to Use
```python
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/gemma-2b-it",
max_seq_length = 1024,
dtype = torch.float16,
load_in_4bit = True,
)
# Load LoRA adapter
model = FastLanguageModel.get_peft_model(
model,
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
)
# Load parameter
model.load_adapter("kihyun1998/gemma-2b-it-mongodb-lora", adapter_name="default")
prompt = """### Instruction:
Convert to MongoDB query string.
### Input:
Collection: users
Fields:
- name (string)
- age (int)
- isActive (boolean)
- country (string)
Question: Show all active users from Korea older than 30.
### Response:
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
---
## π‘ Example Output
```js
db.users.find({ "isActive": true, "country": "Korea", "age": { "$gt": 30 } })
```
---
## π Intended Use
- Converting business-friendly questions into executable MongoDB queries
- Powering internal dashboards, query builders, or no-code tools
- Works best on structured fields and simple query logic
### Out-of-scope:
- Complex joins or aggregation pipelines
- Nested or dynamic schema reasoning
---
## π Training Details
- LoRA rank: 16
- Epochs: 3
- Dataset: 300+ synthetic natural language β MongoDB query pairs
- Training hardware: Google Colab (T4 GPU)
---
## π§ Limitations
- Model assumes collection and fields are already known (RAG context required)
- May hallucinate field names not present in context
- Limited handling of advanced MongoDB features like `$lookup`, `$aggregate`
---
## π§Ύ License
The base model is under [Gemma license](https://ai.google.dev/gemma#license).
This LoRA adapter inherits the same conditions.
---
## π§βπ» Author
- π± [@kihyun1998](https://huggingface.co/kihyun1998)
- π¬ Questions? Open an issue or contact via Hugging Face.
---
## π Citation
```bibtex
@misc{kihyun2025mongodb,
title={Gemma 2B MongoDB Query Generator (LoRA)},
author={Kihyun Park},
year={2025},
howpublished={\\url{https://huggingface.co/kihyun1998/gemma-2b-it-mongodb-lora}}
}
```
|