Last commit not found
# coding=utf-8 | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch HAT model.""" | |
import torch | |
import torch.utils.checkpoint | |
from packaging import version | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, CosineEmbeddingLoss | |
from torch.nn.functional import normalize | |
from transformers.file_utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
) | |
from transformers.modeling_outputs import ( | |
ModelOutput, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from transformers.models.roberta.modeling_roberta import RobertaAttention, RobertaIntermediate, RobertaOutput | |
from transformers.activations import gelu | |
from transformers import PretrainedConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "kiddothe2b/hierarchical-transformer-base-4096" | |
_CONFIG_FOR_DOC = "HATConfig" | |
_TOKENIZER_FOR_DOC = "HATTokenizer" | |
HAT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"kiddothe2b/hierarchical-transformer-base-4096", | |
"kiddothe2b/adhoc-hierarchical-transformer-base-4096", | |
# See all HAT models at https://huggingface.co/models?filter=hierarchical-transformer | |
] | |
def transform_tokens2sentences(hidden_states, num_sentences, max_sentence_length): | |
# transform sequence into segments | |
seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), num_sentences, max_sentence_length, hidden_states.size(-1))) | |
# squash segments into sequence into a single axis (samples * segments, max_segment_length, hidden_size) | |
hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences, | |
max_sentence_length, seg_hidden_states.size(-1)) | |
return hidden_states_reshape | |
def transform_masks2sentences(hidden_states, num_sentences, max_sentence_length): | |
# transform sequence into segments | |
seg_hidden_states = torch.reshape(hidden_states, (hidden_states.size(0), 1, 1, num_sentences, max_sentence_length)) | |
# squash segments into sequence into a single axis (samples * segments, 1, 1, max_segment_length) | |
hidden_states_reshape = seg_hidden_states.contiguous().view(hidden_states.size(0) * num_sentences, | |
1, 1, seg_hidden_states.size(-1)) | |
return hidden_states_reshape | |
def transform_sentences2tokens(seg_hidden_states, num_sentences, max_sentence_length): | |
# transform squashed sequence into segments | |
hidden_states = seg_hidden_states.contiguous().view(seg_hidden_states.size(0) // num_sentences, num_sentences, | |
max_sentence_length, seg_hidden_states.size(-1)) | |
# transform segments into sequence | |
hidden_states = hidden_states.contiguous().view(hidden_states.size(0), num_sentences * max_sentence_length, | |
hidden_states.size(-1)) | |
return hidden_states | |
class BaseModelOutputWithSentenceAttentions(ModelOutput): | |
""" | |
Base class for model's outputs, with potential hidden states and attentions. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. | |
Sentence attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class SequenceRepresentationOutput(ModelOutput): | |
""" | |
Base class for outputs of document representation models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
representations (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | |
Latent representations. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
representations: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class HATForBoWPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`HATForPreTraining`]. | |
Args: | |
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
Total loss as the sum of pre-training losses. | |
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The masked language modeling loss. | |
srp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The sentence representation prediction loss. | |
drp_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The document representation prediction loss. | |
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | |
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). | |
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | |
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
mlm_loss: Optional[torch.FloatTensor] = None | |
srp_loss: Optional[torch.FloatTensor] = None | |
drp_loss: Optional[torch.FloatTensor] = None | |
prediction_logits: torch.FloatTensor = None | |
document_prediction_logits: torch.FloatTensor = None | |
sentence_prediction_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class HATForVICRegPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`HATForVICRegPreTraining`]. | |
Args: | |
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
Total loss as the sum of pre-training losses. | |
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The masked language modeling loss. | |
sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The sentence similarity loss. | |
doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The document similarity loss. | |
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | |
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). | |
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | |
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
mlm_loss: Optional[torch.FloatTensor] = None | |
sent_sim_loss: Optional[torch.FloatTensor] = None | |
sent_std_loss: Optional[torch.FloatTensor] = None | |
sent_cov_loss: Optional[torch.FloatTensor] = None | |
pre_sent_std_loss: Optional[torch.FloatTensor] = None | |
pre_sent_cov_loss: Optional[torch.FloatTensor] = None | |
doc_sim_loss: Optional[torch.FloatTensor] = None | |
doc_std_loss: Optional[torch.FloatTensor] = None | |
doc_cov_loss: Optional[torch.FloatTensor] = None | |
pre_doc_std_loss: Optional[torch.FloatTensor] = None | |
pre_doc_cov_loss: Optional[torch.FloatTensor] = None | |
prediction_logits: torch.FloatTensor = None | |
document_prediction_logits: torch.FloatTensor = None | |
sentence_prediction_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class HATForSimCLRPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`HATForSimCLRPreTraining`]. | |
Args: | |
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
Total loss as the sum of pre-training losses. | |
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The masked language modeling loss. | |
sent_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The sentence similarity loss. | |
doc_sim_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
The document similarity loss. | |
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
document_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | |
Prediction scores of the document prediction head (scores for each vocabulary token before Sigmoid). | |
sentence_prediction_logits (`torch.FloatTensor` of shape `(batch_size, config.hidden_size)`): | |
Prediction scores of the sentence prediction head (scores for each vocabulary token before Sigmoid). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
mlm_loss: Optional[torch.FloatTensor] = None | |
sent_contr_loss: Optional[torch.FloatTensor] = None | |
sent_std_loss: Optional[torch.FloatTensor] = None | |
sent_cov_loss: Optional[torch.FloatTensor] = None | |
doc_contr_loss: Optional[torch.FloatTensor] = None | |
doc_std_loss: Optional[torch.FloatTensor] = None | |
doc_cov_loss: Optional[torch.FloatTensor] = None | |
prediction_logits: torch.FloatTensor = None | |
document_prediction_logits: torch.FloatTensor = None | |
sentence_prediction_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class SentenceClassifierOutput(ModelOutput): | |
""" | |
Base class for outputs of sentence classification models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : | |
Classification loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): | |
Classification scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
sentence_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[Tuple[torch.FloatTensor]] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
sentence_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class HATConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.HAT`. | |
It is used to instantiate a HAT model according to the specified arguments, | |
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration | |
to that of the HAT `kiddothe2b/hat-base-4096 <https://huggingface.co/kiddothe2b/hat-base-4096>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 30522): | |
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or | |
:class:`~transformers.TFBertModel`. | |
max_sentences (:obj:`int`, `optional`, defaults to 64): | |
The maximum number of sentences that this model might ever be used with. | |
max_sentence_size (:obj:`int`, `optional`, defaults to 128): | |
The maximum sentence length that this model might ever be used with. | |
model_max_length (:obj:`int`, `optional`, defaults to 8192): | |
The maximum sequence length (max_sentences * max_sentence_size) that this model might ever be used with | |
encoder_layout (:obj:`Dict`): | |
The sentence/document encoder layout. | |
hidden_size (:obj:`int`, `optional`, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (:obj:`int`, `optional`, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (:obj:`int`, `optional`, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (:obj:`int`, `optional`, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (:obj:`int`, `optional`, defaults to 2): | |
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or | |
:class:`~transformers.TFBertModel`. | |
initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): | |
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, | |
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on | |
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) | |
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to | |
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) | |
<https://arxiv.org/abs/2009.13658>`__. | |
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if ``config.is_decoder=True``. | |
classifier_dropout (:obj:`float`, `optional`): | |
The dropout ratio for the classification head. | |
""" | |
model_type = "hierarchical-transformer" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
max_sentences=64, | |
max_sentence_size=128, | |
model_max_length=8192, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
position_embedding_type="absolute", | |
encoder_layout=None, | |
use_cache=True, | |
classifier_dropout=None, | |
**kwargs | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.max_sentences = max_sentences | |
self.max_sentence_size = max_sentence_size | |
self.model_max_length = model_max_length | |
self.encoder_layout = encoder_layout | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.classifier_dropout = classifier_dropout | |
class HATEmbeddings(nn.Module): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.padding_idx = config.pad_token_id | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx) | |
self.position_embeddings = nn.Embedding(config.max_sentence_length + self.padding_idx + 1, config.hidden_size, padding_idx=self.padding_idx) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer("position_ids", torch.arange(self.padding_idx + 1, | |
config.max_sentence_length + self.padding_idx + 1).repeat(config.max_sentences).expand((1, -1))) | |
if version.parse(torch.__version__) > version.parse("1.6.0"): | |
self.register_buffer( | |
"token_type_ids", | |
torch.zeros(self.position_ids.size(), dtype=torch.long), | |
persistent=False, | |
) | |
def forward( | |
self, | |
input_ids=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, self.position_ids) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
class HATLayer(nn.Module): | |
def __init__(self, config, use_sentence_encoder=True, use_document_encoder=True): | |
super().__init__() | |
self.max_sentence_length = config.max_sentence_length | |
self.max_sentences = config.max_sentences | |
self.hidden_size = config.hidden_size | |
self.use_document_encoder = use_document_encoder | |
self.use_sentence_encoder = use_sentence_encoder | |
if self.use_sentence_encoder: | |
self.sentence_encoder = TransformerLayer(config) | |
if self.use_document_encoder: | |
self.document_encoder = TransformerLayer(config) | |
self.position_embeddings = nn.Embedding(config.max_sentences+1, config.hidden_size, | |
padding_idx=config.pad_token_id) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
num_sentences=None, | |
output_attentions=False, | |
): | |
sentence_outputs = (None, None) | |
if self.use_sentence_encoder: | |
# transform sequences to sentences | |
sentence_inputs = transform_tokens2sentences(hidden_states, | |
num_sentences=num_sentences, | |
max_sentence_length=self.max_sentence_length) | |
sentence_masks = transform_masks2sentences(attention_mask, | |
num_sentences=num_sentences, | |
max_sentence_length=self.max_sentence_length) | |
sentence_outputs = self.sentence_encoder(sentence_inputs, | |
sentence_masks, | |
output_attentions=output_attentions) | |
# transform sentences to tokens | |
outputs = transform_sentences2tokens(sentence_outputs[0], | |
num_sentences=num_sentences, | |
max_sentence_length=self.max_sentence_length) | |
else: | |
outputs = hidden_states | |
document_outputs = (None, None) | |
if self.use_document_encoder: | |
# gather sentence representative tokens | |
sentence_global_tokens = outputs[:, ::self.max_sentence_length].clone() | |
sentence_attention_mask = attention_mask[:, :, :, ::self.max_sentence_length].clone() | |
sentence_positions = torch.arange(1, num_sentences+1).repeat(outputs.size(0), 1).to(outputs.device) \ | |
* (sentence_attention_mask.reshape(-1, num_sentences) >= -100).int().to(outputs.device) | |
outputs[:, ::self.max_sentence_length] += self.position_embeddings(sentence_positions) | |
document_outputs = self.document_encoder(sentence_global_tokens, | |
sentence_attention_mask, | |
output_attentions=output_attentions) | |
# replace sentence representative tokens | |
outputs[:, ::self.max_sentence_length] = document_outputs[0] | |
if output_attentions: | |
return outputs, sentence_outputs[1], document_outputs[1] | |
return outputs, None | |
class TransformerLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = RobertaAttention(config) | |
self.is_decoder = config.is_decoder | |
self.intermediate = RobertaIntermediate(config) | |
self.output = RobertaOutput(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
output_attentions=False, | |
): | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
outputs = (layer_output,) + outputs | |
return outputs | |
class HATEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([HATLayer(config, | |
use_sentence_encoder=self.config.encoder_layout[str(idx)]['sentence_encoder'], | |
use_document_encoder=self.config.encoder_layout[str(idx)]['document_encoder']) | |
for idx in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
num_sentences=None, | |
use_cache=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_sentence_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
num_sentences, | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
all_sentence_attentions = all_sentence_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
all_hidden_states, | |
all_self_attentions, | |
all_sentence_attentions | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithSentenceAttentions( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
sentence_attentions=all_sentence_attentions, | |
) | |
def _tie_weights(self): | |
""" | |
Tie the weights between sentence positional embeddings across all layers. | |
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the | |
weights instead. | |
""" | |
original_position_embeddings = None | |
for module in self.layer: | |
if hasattr(module, "position_embeddings"): | |
assert hasattr(module.position_embeddings, "weight") | |
if original_position_embeddings is None: | |
original_position_embeddings = module.position_embeddings | |
if self.config.torchscript: | |
module.position_embeddings.weight = nn.Parameter(original_position_embeddings.weight.clone()) | |
else: | |
module.position_embeddings.weight = original_position_embeddings.weight | |
return | |
class HATPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = HATConfig | |
base_model_prefix = "hat" | |
supports_gradient_checkpointing = True | |
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, HATEncoder): | |
module.gradient_checkpointing = value | |
def update_keys_to_ignore(self, config, del_keys_to_ignore): | |
"""Remove some keys from ignore list""" | |
if not config.tie_word_embeddings: | |
# must make a new list, or the class variable gets modified! | |
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore] | |
self._keys_to_ignore_on_load_missing = [ | |
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore | |
] | |
def from_config(cls, config): | |
return cls._from_config(config) | |
HAT_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`HATConfig`]): Model configuration class with all the parameters of the | |
model. Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
HAT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`HATTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class AttentivePooling(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attn_dropout = config.hidden_dropout_prob | |
self.lin_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
self.v = nn.Linear(config.hidden_size, 1, bias=False) | |
def forward(self, inputs): | |
lin_out = self.lin_proj(inputs) | |
attention_weights = torch.tanh(self.v(lin_out)).squeeze(-1) | |
attention_weights_normalized = torch.softmax(attention_weights, -1) | |
return torch.sum(attention_weights_normalized.unsqueeze(-1) * inputs, 1) | |
class HATPooler(nn.Module): | |
def __init__(self, config, pooling='max'): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.pooling = pooling | |
if self.pooling == 'attentive': | |
self.attentive_pooling = AttentivePooling(config) | |
self.activation = nn.Tanh() | |
self.max_sentence_length = config.max_sentence_length | |
def forward(self, hidden_states): | |
if self.pooling == 'attentive': | |
pooled_output = self.attentive_pooling(hidden_states) | |
else: | |
pooled_output = torch.max(hidden_states, dim=1)[0] | |
pooled_output = self.dense(pooled_output) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class HATSentencizer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
self.max_sentence_length = config.max_sentence_length | |
def forward(self, hidden_states): | |
sentence_repr_hidden_states = hidden_states[:, ::self.max_sentence_length] | |
sentence_outputs = self.dense(sentence_repr_hidden_states) | |
sentence_outputs = self.activation(sentence_outputs) | |
return sentence_outputs | |
class HATModel(HATPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
cross-attention is added between the self-attention layers, following the architecture described in *Attention is | |
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz | |
Kaiser and Illia Polosukhin. | |
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set | |
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and | |
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. | |
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 | |
""" | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->HAT | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = HATEmbeddings(config) | |
self.encoder = HATEncoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
# Copied from transformers.models.bert.modeling_bert.BertModel.forward | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length)), device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
# Compute number of sentences | |
num_batch_sentences = input_ids.shape[-1] // self.config.max_sentence_length | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
num_sentences=num_batch_sentences, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
if not return_dict: | |
return (sequence_output) + encoder_outputs[1:] | |
return BaseModelOutputWithSentenceAttentions( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
sentence_attentions=encoder_outputs.sentence_attentions, | |
) | |
class HATLMHead(nn.Module): | |
"""HAT Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
self.decoder.bias = self.bias | |
def forward(self, features, **kwargs): | |
x = self.dense(features) | |
x = gelu(x) | |
x = self.layer_norm(x) | |
# project back to size of vocabulary with bias | |
x = self.decoder(x) | |
return x | |
def _tie_weights(self): | |
# To tie those two weights if they get disconnected (on TPU or when the bias is resized) | |
self.bias = self.decoder.bias | |
class HATSentenceHead(nn.Module): | |
"""HAT Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.decoder = nn.Linear(config.hidden_size, config.sentence_embedding_size) | |
self.bias = nn.Parameter(torch.zeros(config.sentence_embedding_size)) | |
self.decoder.bias = self.bias | |
def forward(self, features): | |
x = gelu(features) | |
x = self.layer_norm(x) | |
x = self.decoder(x) | |
return x | |
def _tie_weights(self): | |
# To tie those two weights if they get disconnected (on TPU or when the bias is resized) | |
self.bias = self.decoder.bias | |
class HATSiameseHead(nn.Module): | |
"""HAT Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size * 2, bias=False) | |
def forward(self, features): | |
x = self.dense(features) | |
return x | |
class HATForMaskedLM(HATPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.hi_transformer = HATModel(config) | |
self.lm_head = HATLMHead(config) | |
# The LM head weights require special treatment only when they are tied with the word embeddings | |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.lm_head.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head.decoder = new_embeddings | |
def get_input_embeddings(self): | |
return self.hi_transformer.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.hi_transformer.embeddings.word_embeddings = value | |
def _tie_or_clone_weights(self, output_embeddings, input_embeddings): | |
"""Tie or clone module weights depending of whether we are using TorchScript or not""" | |
if self.config.torchscript: | |
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) | |
else: | |
output_embeddings.weight = input_embeddings.weight | |
if getattr(output_embeddings, "bias", None) is not None: | |
output_embeddings.bias.data = nn.functional.pad( | |
output_embeddings.bias.data, | |
( | |
0, | |
output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], | |
), | |
"constant", | |
0, | |
) | |
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | |
output_embeddings.out_features = input_embeddings.num_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
kwargs (`Dict[str, any]`, optional, defaults to *{}*): | |
Used to hide legacy arguments that have been deprecated. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.lm_head(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HATModelForDocumentRepresentation(HATPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config, pooling='max'): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.max_sentence_length = config.max_sentence_length | |
self.hi_transformer = HATModel(config) | |
self.pooler = HATPooler(config, pooling=pooling) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
pooled_outputs = self.pooler(sequence_output[:, ::self.max_sentence_length]) | |
drp_loss = None | |
if labels is not None: | |
loss_fct = MSELoss() | |
drp_loss = loss_fct(pooled_outputs, labels) | |
if not return_dict: | |
output = (pooled_outputs,) + outputs[2:] | |
return ((drp_loss,) + output) if drp_loss is not None else output | |
return SequenceRepresentationOutput( | |
loss=drp_loss, | |
representations=pooled_outputs, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HATModelForMaskedSentenceRepresentation(HATPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.hi_transformer = HATModel(config) | |
self.sentencizer = HATSentencizer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sentence_outputs = self.sentencizer(sequence_output) | |
srp_loss = None | |
if labels is not None: | |
loss_fct = MSELoss() | |
srp_loss = loss_fct(sentence_outputs, labels) | |
if not return_dict: | |
output = (sentence_outputs,) + outputs[2:] | |
return ((srp_loss,) + output) if srp_loss is not None else output | |
return SequenceRepresentationOutput( | |
loss=srp_loss, | |
representations=sentence_outputs, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HATModelForBoWPreTraining(HATPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.hi_transformer = HATModel(config) | |
if self.config.mlm or self.config.mslm: | |
self.lm_head = HATLMHead(config) | |
if self.config.srp or self.config.srp: | |
self.sentencizer = HATSentencizer(config) | |
if self.config.drp: | |
self.pooler = HATPooler(config, pooling='max') | |
self.document_cls = nn.Linear(config.hidden_size, config.vocab_size) | |
if self.config.srp: | |
self.sentence_cls = nn.Linear(config.hidden_size, config.vocab_size) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
document_labels=None, | |
sentence_labels=None, | |
sentence_masks=None, | |
sentence_mask_ids=None, | |
document_mask_ids=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# Collect sequence output representations | |
sequence_output = outputs[0] | |
# Masked Language Modeling (MLM) | |
prediction_scores = None | |
if self.config.mlm or self.config.mslm: | |
prediction_scores = self.lm_head(sequence_output) | |
if self.config.srp or self.config.drp: | |
sentence_outputs = self.sentencizer(sequence_output) | |
# Sentence Representation Prediction (SRP) | |
sentence_prediction_scores = None | |
if self.config.srp: | |
sentence_prediction_scores = self.sentence_cls(sentence_outputs) | |
if sentence_mask_ids is not None: | |
sentence_prediction_scores = sentence_prediction_scores[:, :, sentence_mask_ids].clone() | |
# Document Representation Prediction (DRP) | |
document_prediction_scores = None | |
if self.config.drp: | |
pooled_outputs = self.pooler(sentence_outputs) | |
document_prediction_scores = self.document_cls(pooled_outputs) | |
if document_mask_ids is not None: | |
document_prediction_scores = document_prediction_scores[:, document_mask_ids].clone() | |
total_loss = None | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
total_loss = masked_lm_loss.clone() | |
drp_loss = None | |
if document_labels is not None: | |
loss_fct = BCEWithLogitsLoss() | |
drp_loss = loss_fct(document_prediction_scores, document_labels) | |
if labels is not None: | |
total_loss += drp_loss | |
else: | |
total_loss = drp_loss | |
srp_loss = None | |
if sentence_labels is not None: | |
if self.config.sentence_embedding_size != self.config.vocab_size: | |
loss_fct = CosineEmbeddingLoss() | |
srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], | |
sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], | |
torch.ones((sentence_masks.view(-1).sum(), ), device=sentence_masks.device)) | |
else: | |
loss_fct = BCEWithLogitsLoss() | |
srp_loss = loss_fct(sentence_prediction_scores.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()], | |
sentence_labels.view(-1, sentence_labels.shape[-1])[sentence_masks.view(-1).bool()]) | |
if labels is not None or document_labels is not None: | |
total_loss += srp_loss | |
else: | |
total_loss = srp_loss | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((total_loss, masked_lm_loss, srp_loss, drp_loss) + output) if total_loss is not None else output | |
return HATForBoWPreTrainingOutput( | |
loss=total_loss, | |
mlm_loss=masked_lm_loss, | |
srp_loss=srp_loss, | |
drp_loss=drp_loss, | |
prediction_logits=prediction_scores, | |
document_prediction_logits=document_prediction_scores, | |
sentence_prediction_logits=sentence_prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HATModelForVICRegPreTraining(HATPreTrainedModel): | |
def __init__(self, config, | |
document_regularization=True, | |
sentence_regularization=True): | |
super().__init__(config) | |
self.document_regularization = document_regularization | |
self.sentence_regularization = sentence_regularization | |
self.hi_transformer = HATModel(config) | |
if self.config.mlm: | |
self.lm_head = HATLMHead(config) | |
if self.config.sent_sim or self.config.doc_sim: | |
self.sentencizer = HATSentencizer(config) | |
self.cosine = nn.CosineSimilarity(dim=1) | |
if self.config.doc_sim: | |
self.pooler = HATPooler(config, pooling='max') | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
secondary_input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
labels=None, | |
secondary_labels=None, | |
sentence_masks=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
primary_outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
secondary_outputs = self.hi_transformer( | |
secondary_input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# Collect sequence output representations | |
primary_sequence_output = primary_outputs[0] | |
secondary_sequence_output = secondary_outputs[0] | |
# Masked Language Modeling (MLM) | |
primary_prediction_scores = None | |
secondary_prediction_scores = None | |
if self.config.mlm: | |
primary_prediction_scores = self.lm_head(primary_sequence_output) | |
if secondary_labels is not None: | |
secondary_prediction_scores = self.lm_head(secondary_sequence_output) | |
if self.config.sent_sim or self.config.doc_sim: | |
primary_sentence_outputs = self.sentencizer(primary_sequence_output) | |
secondary_sentence_outputs = self.sentencizer(secondary_sequence_output) | |
# Document Representation Prediction (DRP) | |
if self.config.doc_sim: | |
primary_pooled_outputs = self.pooler(primary_sentence_outputs) | |
secondary_pooled_outputs = self.pooler(secondary_sentence_outputs) | |
total_loss = None | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
total_loss = masked_lm_loss.clone() / 2 | |
if secondary_labels is not None: | |
masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1)) | |
total_loss += masked_lm_loss / 2 | |
sent_sim_loss = None | |
sent_std_loss = None | |
sent_cov_loss = None | |
pre_sent_std_loss = None | |
pre_sent_cov_loss = None | |
if self.config.sent_sim: | |
# sentence projections similarity | |
sent_sim_loss = 1 - self.cosine( | |
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), | |
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)).mean() | |
# sentence projections variance, covariance | |
sent_std_loss, sent_cov_loss = vic_reg( | |
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), | |
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)) | |
if labels is not None: | |
total_loss += sent_sim_loss | |
else: | |
total_loss = sent_sim_loss | |
if self.sentence_regularization: | |
total_loss += sent_std_loss + (0.1 * sent_cov_loss) | |
doc_sim_loss = None | |
doc_std_loss = None | |
doc_cov_loss = None | |
pre_doc_std_loss = None | |
pre_doc_cov_loss = None | |
if self.config.doc_sim: | |
# document projections similarity | |
doc_sim_loss = 1 - self.cosine(primary_pooled_outputs, secondary_pooled_outputs).mean() | |
# document projections variance, covariance | |
doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs) | |
total_loss += doc_sim_loss | |
if self.document_regularization: | |
total_loss += doc_std_loss + (0.1 * doc_cov_loss) | |
if not return_dict: | |
output = (primary_prediction_scores,) + primary_outputs[2:] | |
return ((total_loss, masked_lm_loss, sent_sim_loss, doc_sim_loss) + output) if total_loss is not None else output | |
return HATForVICRegPreTrainingOutput( | |
loss=total_loss, | |
mlm_loss=masked_lm_loss, | |
sent_sim_loss=sent_sim_loss, | |
sent_std_loss=sent_std_loss, | |
sent_cov_loss=sent_cov_loss, | |
pre_sent_std_loss=pre_sent_std_loss, | |
pre_sent_cov_loss=pre_sent_cov_loss, | |
doc_sim_loss=doc_sim_loss, | |
doc_std_loss=doc_std_loss, | |
doc_cov_loss=doc_cov_loss, | |
pre_doc_std_loss=pre_doc_std_loss, | |
pre_doc_cov_loss=pre_doc_cov_loss, | |
prediction_logits=primary_prediction_scores, | |
hidden_states=primary_outputs.hidden_states, | |
attentions=primary_outputs.attentions, | |
) | |
class HATModelForSimCLRPreTraining(HATPreTrainedModel): | |
def __init__(self, config, | |
document_regularization=True, | |
sentence_regularization=True): | |
super().__init__(config) | |
self.document_regularization = document_regularization | |
self.sentence_regularization = sentence_regularization | |
self.hi_transformer = HATModel(config) | |
if self.config.mlm: | |
self.lm_head = HATLMHead(config) | |
if self.config.sent_sim or self.config.doc_sim: | |
self.sentencizer = HATSentencizer(config) | |
if self.config.doc_sim: | |
self.pooler = HATPooler(config, pooling='max') | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
secondary_input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
labels=None, | |
secondary_labels=None, | |
sentence_masks=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
primary_outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
secondary_outputs = self.hi_transformer( | |
secondary_input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# Collect sequence output representations | |
primary_sequence_output = primary_outputs[0] | |
secondary_sequence_output = secondary_outputs[0] | |
# Masked Language Modeling (MLM) | |
primary_prediction_scores = None | |
secondary_prediction_scores = None | |
if self.config.mlm: | |
primary_prediction_scores = self.lm_head(primary_sequence_output) | |
if secondary_labels is not None: | |
secondary_prediction_scores = self.lm_head(secondary_sequence_output) | |
if self.config.sent_sim or self.config.doc_sim: | |
primary_sentence_outputs = self.sentencizer(primary_sequence_output) | |
secondary_sentence_outputs = self.sentencizer(secondary_sequence_output) | |
# Document Representation Prediction (DRP) | |
if self.config.doc_sim: | |
primary_pooled_outputs = self.pooler(primary_sentence_outputs) | |
secondary_pooled_outputs = self.pooler(secondary_sentence_outputs) | |
total_loss = None | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(primary_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
total_loss = masked_lm_loss.clone() / 2 | |
if secondary_labels is not None: | |
masked_lm_loss = loss_fct(secondary_prediction_scores.view(-1, self.config.vocab_size), secondary_labels.view(-1)) | |
total_loss += masked_lm_loss / 2 | |
sent_contr_loss = None | |
sent_std_loss = None | |
sent_cov_loss = None | |
if self.config.sent_sim: | |
# sentence contrastive loss | |
loss_fct = CrossEntropyLoss() | |
# sentence queue: (2 x BS X S, H) | |
flatten_sentence_masks = sentence_masks.view(-1) | |
flatten_primary_sentence_outputs = primary_sentence_outputs.view(-1, self.config.hidden_size) | |
flatten_secondary_sentence_outputs = secondary_sentence_outputs.view(-1, self.config.hidden_size) | |
# merge sentence queue (sentences from both branches) | |
flatten_primary_sentence_outputs = normalize(flatten_primary_sentence_outputs) | |
flatten_secondary_sentence_outputs = normalize(flatten_secondary_sentence_outputs) | |
sentence_queue = torch.cat([flatten_primary_sentence_outputs, flatten_secondary_sentence_outputs], dim=0) | |
# sentence logits: (BS x S, 2 x BS x S) | |
primary_sent_contrast_logits = torch.matmul(flatten_primary_sentence_outputs, sentence_queue.T) / self.config.temperature | |
secondary_sent_contrast_logits = torch.matmul(flatten_secondary_sentence_outputs, sentence_queue.T) / self.config.temperature | |
batch_size = primary_sent_contrast_logits.shape[0] | |
# mask-out self-contrast cases | |
logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device) | |
primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device) | |
secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device) | |
primary_sent_contrast_logits += (primary_logits_mask * -1e3) | |
secondary_sent_contrast_logits += (secondary_logits_mask * -1e3) | |
# mask-out logits in padded sentences | |
primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3 | |
primary_sent_contrast_logits[:, ~flatten_sentence_masks.repeat(2)] = -1e3 | |
# auto-compute labels | |
primary_sentence_labels = torch.arange(batch_size).to(input_ids.device) + batch_size | |
primary_sentence_labels[~flatten_sentence_masks] = -100 | |
secondary_sentence_labels = torch.arange(batch_size).to(input_ids.device) | |
secondary_sentence_labels[~flatten_sentence_masks] = -100 | |
# compute loss for both branches | |
sent_contr_loss = (loss_fct(primary_sent_contrast_logits, primary_sentence_labels) + | |
loss_fct(secondary_sent_contrast_logits, secondary_sentence_labels)) * 0.5 | |
# sentence outputs variance, covariance | |
sent_std_loss, sent_cov_loss = vic_reg( | |
primary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size), | |
secondary_sentence_outputs[sentence_masks].view(-1, self.config.hidden_size)) | |
if labels is not None: | |
total_loss += sent_contr_loss | |
else: | |
total_loss = sent_contr_loss | |
if self.sentence_regularization: | |
total_loss += sent_std_loss + (0.1 * sent_cov_loss) | |
doc_contr_loss = None | |
doc_std_loss = None | |
doc_cov_loss = None | |
if self.config.doc_sim: | |
# sentence contrastive loss | |
loss_fct = CrossEntropyLoss() | |
# sentence queue: (2 x BS, H) | |
primary_pooled_outputs = normalize(primary_pooled_outputs) | |
secondary_pooled_outputs = normalize(secondary_pooled_outputs) | |
document_queue = torch.cat([primary_pooled_outputs, secondary_pooled_outputs], dim=0) | |
# sentence logits: (BS, 2 x BS) | |
primary_doc_contrast_logits = torch.matmul(primary_pooled_outputs, document_queue.T) / self.config.temperature | |
secondary_doc_contrast_logits = torch.matmul(secondary_pooled_outputs, document_queue.T) / self.config.temperature | |
batch_size = primary_doc_contrast_logits.shape[0] | |
# mask-out self-contrast cases | |
logits_mask = torch.eye(batch_size, batch_size).to(input_ids.device) | |
primary_logits_mask = torch.cat([logits_mask, torch.zeros_like(logits_mask).to(input_ids.device)], dim=1).to(input_ids.device) | |
secondary_logits_mask = torch.cat([torch.zeros_like(logits_mask).to(input_ids.device), logits_mask], dim=1).to(input_ids.device) | |
primary_doc_contrast_logits += (primary_logits_mask * -1e3) | |
secondary_doc_contrast_logits += (secondary_logits_mask * -1e3) | |
# auto-compute labels | |
primary_doc_labels = torch.arange(batch_size).to(input_ids.device) + batch_size | |
secondary_doc_labels = torch.arange(batch_size).to(input_ids.device) | |
# compute loss for both branches | |
doc_contr_loss = (loss_fct(primary_doc_contrast_logits, primary_doc_labels) + | |
loss_fct(secondary_doc_contrast_logits, secondary_doc_labels)) * 0.5 | |
# sentence outputs variance, covariance | |
doc_std_loss, doc_cov_loss = vic_reg(primary_pooled_outputs, secondary_pooled_outputs) | |
if labels is not None: | |
total_loss += doc_contr_loss | |
else: | |
total_loss = doc_contr_loss | |
if self.document_regularization: | |
total_loss += doc_std_loss + (0.1 * doc_cov_loss) | |
if not return_dict: | |
output = (primary_prediction_scores,) + primary_outputs[2:] | |
return ((total_loss, masked_lm_loss, sent_contr_loss, doc_contr_loss) + output) if total_loss is not None else output | |
return HATForSimCLRPreTrainingOutput( | |
loss=total_loss, | |
mlm_loss=masked_lm_loss, | |
sent_contr_loss=sent_contr_loss, | |
sent_std_loss=sent_std_loss, | |
sent_cov_loss=sent_cov_loss, | |
doc_contr_loss=doc_contr_loss, | |
doc_std_loss=doc_std_loss, | |
doc_cov_loss=doc_cov_loss, | |
prediction_logits=primary_prediction_scores, | |
hidden_states=primary_outputs.hidden_states, | |
attentions=primary_outputs.attentions, | |
) | |
class HATForSequenceClassification(HATPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config, pooling='max'): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.max_sentence_length = config.max_sentence_length | |
self.pooling = pooling | |
self.hi_transformer = HATModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.pooler = HATPooler(config, pooling=pooling) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
if self.pooling == 'first': | |
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1)) | |
elif self.pooling == 'last': | |
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1)) | |
else: | |
pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length]) | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HATModelForSequentialSentenceClassification(HATPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.hi_transformer = HATModel(config) | |
self.sentencizer = HATSentencizer(config) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sentence_outputs = self.sentencizer(sequence_output) | |
sentence_outputs = self.dropout(sentence_outputs) | |
logits = self.classifier(sentence_outputs) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.view(-1, 1).squeeze(), labels.view(-1).squeeze()) | |
else: | |
loss = loss_fct(logits.view(-1, 1), labels.view(-1)) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
mask = labels[:, :, 0] != -1 | |
loss = loss_fct(logits[mask], labels[mask]) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SentenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
sentence_attentions=outputs.sentence_attentions | |
) | |
class HATForMultipleChoice(HATPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config, pooling='last'): | |
super().__init__(config) | |
self.pooling = pooling | |
self.max_sentence_length = config.max_sentence_length | |
self.hi_transformer = HATModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.pooler = HATPooler(config, pooling=pooling) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
token_type_ids=None, | |
attention_mask=None, | |
labels=None, | |
position_ids=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
flat_inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.hi_transformer( | |
flat_input_ids, | |
position_ids=flat_position_ids, | |
token_type_ids=flat_token_type_ids, | |
attention_mask=flat_attention_mask, | |
inputs_embeds=flat_inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
if self.pooling == 'first': | |
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, 0, :], 1)) | |
elif self.pooling == 'last': | |
pooled_output = self.pooler(torch.unsqueeze(sequence_output[:, -128, :], 1)) | |
else: | |
pooled_output = self.pooler(sequence_output[:, ::self.max_sentence_length]) | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HATForTokenClassification(HATPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.hi_transformer = HATModel(config, add_pooling_layer=False) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HATForQuestionAnswering(HATPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.hi_transformer = HATModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hi_transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def create_position_ids_from_input_ids(input_ids, padding_idx, position_ids): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
x: torch.Tensor x: | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
return position_ids[:, :input_ids.size(1)].repeat(input_ids.size(0), 1) * mask | |
def normalized_output_std_loss(x): | |
return torch.std(x / torch.nn.functional.normalize(x, dim=1), dim=0).mean() | |
def vic_reg(x: torch.Tensor, y: torch.Tensor): | |
std_x = torch.sqrt(x.var(dim=0) + 0.0001) | |
std_y = torch.sqrt(y.var(dim=0) + 0.0001) | |
std_loss = torch.mean(torch.relu(1 - std_x)) / 2 + torch.mean(torch.relu(1 - std_y)) / 2 | |
cov_x = (x.T @ x) / (x.shape[0] - 1) | |
cov_y = (y.T @ y) / (y.shape[0] - 1) | |
cov_loss = off_diagonal(cov_x).pow_(2).sum().div(x.shape[-1]) + \ | |
off_diagonal(cov_y).pow_(2).sum().div(y.shape[-1]) | |
return std_loss, cov_loss | |
def off_diagonal(x): | |
n, m = x.shape | |
assert n == m | |
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() | |