|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import print_function |
|
|
|
import argparse |
|
import logging |
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
import os |
|
import sys |
|
import onnxruntime |
|
import random |
|
import torch |
|
from tqdm import tqdm |
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append('{}/../..'.format(ROOT_DIR)) |
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) |
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 |
|
|
|
|
|
def get_dummy_input(batch_size, seq_len, out_channels, device): |
|
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) |
|
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device) |
|
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) |
|
t = torch.rand((batch_size), dtype=torch.float32, device=device) |
|
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device) |
|
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) |
|
return x, mask, mu, t, spks, cond |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser(description='export your model for deployment') |
|
parser.add_argument('--model_dir', |
|
type=str, |
|
default='pretrained_models/CosyVoice-300M', |
|
help='local path') |
|
args = parser.parse_args() |
|
print(args) |
|
return args |
|
|
|
|
|
def main(): |
|
args = get_args() |
|
logging.basicConfig(level=logging.DEBUG, |
|
format='%(asctime)s %(levelname)s %(message)s') |
|
|
|
try: |
|
model = CosyVoice(args.model_dir) |
|
except Exception: |
|
try: |
|
model = CosyVoice2(args.model_dir) |
|
except Exception: |
|
raise TypeError('no valid model_type!') |
|
|
|
|
|
estimator = model.model.flow.decoder.estimator |
|
|
|
device = model.model.device |
|
batch_size, seq_len = 2, 256 |
|
out_channels = model.model.flow.decoder.estimator.out_channels |
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device) |
|
torch.onnx.export( |
|
estimator, |
|
(x, mask, mu, t, spks, cond), |
|
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir), |
|
export_params=True, |
|
opset_version=18, |
|
do_constant_folding=True, |
|
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'], |
|
output_names=['estimator_out'], |
|
dynamic_axes={ |
|
'x': {2: 'seq_len'}, |
|
'mask': {2: 'seq_len'}, |
|
'mu': {2: 'seq_len'}, |
|
'cond': {2: 'seq_len'}, |
|
'estimator_out': {2: 'seq_len'}, |
|
} |
|
) |
|
|
|
|
|
option = onnxruntime.SessionOptions() |
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
option.intra_op_num_threads = 1 |
|
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider'] |
|
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir), |
|
sess_options=option, providers=providers) |
|
|
|
for _ in tqdm(range(10)): |
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device) |
|
output_pytorch = estimator(x, mask, mu, t, spks, cond) |
|
ort_inputs = { |
|
'x': x.cpu().numpy(), |
|
'mask': mask.cpu().numpy(), |
|
'mu': mu.cpu().numpy(), |
|
't': t.cpu().numpy(), |
|
'spks': spks.cpu().numpy(), |
|
'cond': cond.cpu().numpy() |
|
} |
|
output_onnx = estimator_onnx.run(None, ort_inputs)[0] |
|
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|