|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import pack, rearrange, repeat |
|
from cosyvoice.utils.common import mask_to_bias |
|
from cosyvoice.utils.mask import add_optional_chunk_mask |
|
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D |
|
from matcha.models.components.transformer import BasicTransformerBlock |
|
|
|
|
|
class Transpose(torch.nn.Module): |
|
def __init__(self, dim0: int, dim1: int): |
|
super().__init__() |
|
self.dim0 = dim0 |
|
self.dim1 = dim1 |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = torch.transpose(x, self.dim0, self.dim1) |
|
return x |
|
|
|
|
|
class CausalBlock1D(Block1D): |
|
def __init__(self, dim: int, dim_out: int): |
|
super(CausalBlock1D, self).__init__(dim, dim_out) |
|
self.block = torch.nn.Sequential( |
|
CausalConv1d(dim, dim_out, 3), |
|
Transpose(1, 2), |
|
nn.LayerNorm(dim_out), |
|
Transpose(1, 2), |
|
nn.Mish(), |
|
) |
|
|
|
def forward(self, x: torch.Tensor, mask: torch.Tensor): |
|
output = self.block(x * mask) |
|
return output * mask |
|
|
|
|
|
class CausalResnetBlock1D(ResnetBlock1D): |
|
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8): |
|
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups) |
|
self.block1 = CausalBlock1D(dim, dim_out) |
|
self.block2 = CausalBlock1D(dim_out, dim_out) |
|
|
|
|
|
class CausalConv1d(torch.nn.Conv1d): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int = 1, |
|
dilation: int = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
super(CausalConv1d, self).__init__(in_channels, out_channels, |
|
kernel_size, stride, |
|
padding=0, dilation=dilation, |
|
groups=groups, bias=bias, |
|
padding_mode=padding_mode, |
|
device=device, dtype=dtype) |
|
assert stride == 1 |
|
self.causal_padding = (kernel_size - 1, 0) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = F.pad(x, self.causal_padding) |
|
x = super(CausalConv1d, self).forward(x) |
|
return x |
|
|
|
|
|
class ConditionalDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
causal=False, |
|
channels=(256, 256), |
|
dropout=0.05, |
|
attention_head_dim=64, |
|
n_blocks=1, |
|
num_mid_blocks=2, |
|
num_heads=4, |
|
act_fn="snake", |
|
): |
|
""" |
|
This decoder requires an input with the same shape of the target. So, if your text content |
|
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. |
|
""" |
|
super().__init__() |
|
channels = tuple(channels) |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.causal = causal |
|
self.time_embeddings = SinusoidalPosEmb(in_channels) |
|
time_embed_dim = channels[0] * 4 |
|
self.time_mlp = TimestepEmbedding( |
|
in_channels=in_channels, |
|
time_embed_dim=time_embed_dim, |
|
act_fn="silu", |
|
) |
|
self.down_blocks = nn.ModuleList([]) |
|
self.mid_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
output_channel = in_channels |
|
for i in range(len(channels)): |
|
input_channel = output_channel |
|
output_channel = channels[i] |
|
is_last = i == len(channels) - 1 |
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \ |
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
dim=output_channel, |
|
num_attention_heads=num_heads, |
|
attention_head_dim=attention_head_dim, |
|
dropout=dropout, |
|
activation_fn=act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
downsample = ( |
|
Downsample1D(output_channel) if not is_last else |
|
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
) |
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) |
|
|
|
for _ in range(num_mid_blocks): |
|
input_channel = channels[-1] |
|
out_channels = channels[-1] |
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \ |
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
|
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
dim=output_channel, |
|
num_attention_heads=num_heads, |
|
attention_head_dim=attention_head_dim, |
|
dropout=dropout, |
|
activation_fn=act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
|
|
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) |
|
|
|
channels = channels[::-1] + (channels[0],) |
|
for i in range(len(channels) - 1): |
|
input_channel = channels[i] * 2 |
|
output_channel = channels[i + 1] |
|
is_last = i == len(channels) - 2 |
|
resnet = CausalResnetBlock1D( |
|
dim=input_channel, |
|
dim_out=output_channel, |
|
time_emb_dim=time_embed_dim, |
|
) if self.causal else ResnetBlock1D( |
|
dim=input_channel, |
|
dim_out=output_channel, |
|
time_emb_dim=time_embed_dim, |
|
) |
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
dim=output_channel, |
|
num_attention_heads=num_heads, |
|
attention_head_dim=attention_head_dim, |
|
dropout=dropout, |
|
activation_fn=act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
upsample = ( |
|
Upsample1D(output_channel, use_conv_transpose=True) |
|
if not is_last |
|
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
) |
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) |
|
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1]) |
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.GroupNorm): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x, mask, mu, t, spks=None, cond=None): |
|
"""Forward pass of the UNet1DConditional model. |
|
|
|
Args: |
|
x (torch.Tensor): shape (batch_size, in_channels, time) |
|
mask (_type_): shape (batch_size, 1, time) |
|
t (_type_): shape (batch_size) |
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. |
|
cond (_type_, optional): placeholder for future use. Defaults to None. |
|
|
|
Raises: |
|
ValueError: _description_ |
|
ValueError: _description_ |
|
|
|
Returns: |
|
_type_: _description_ |
|
""" |
|
|
|
t = self.time_embeddings(t).to(t.dtype) |
|
t = self.time_mlp(t) |
|
|
|
x = pack([x, mu], "b * t")[0] |
|
|
|
if spks is not None: |
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) |
|
x = pack([x, spks], "b * t")[0] |
|
if cond is not None: |
|
x = pack([x, cond], "b * t")[0] |
|
|
|
hiddens = [] |
|
masks = [mask] |
|
for resnet, transformer_blocks, downsample in self.down_blocks: |
|
mask_down = masks[-1] |
|
x = resnet(x, mask_down, t) |
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1) |
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
for transformer_block in transformer_blocks: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=attn_mask, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
hiddens.append(x) |
|
x = downsample(x * mask_down) |
|
masks.append(mask_down[:, :, ::2]) |
|
masks = masks[:-1] |
|
mask_mid = masks[-1] |
|
|
|
for resnet, transformer_blocks in self.mid_blocks: |
|
x = resnet(x, mask_mid, t) |
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1) |
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
for transformer_block in transformer_blocks: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=attn_mask, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
|
|
for resnet, transformer_blocks, upsample in self.up_blocks: |
|
mask_up = masks.pop() |
|
skip = hiddens.pop() |
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] |
|
x = resnet(x, mask_up, t) |
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1) |
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
for transformer_block in transformer_blocks: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=attn_mask, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
x = upsample(x * mask_up) |
|
x = self.final_block(x, mask_up) |
|
output = self.final_proj(x * mask_up) |
|
return output * mask |
|
|