|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Generator |
|
import torch |
|
import numpy as np |
|
import threading |
|
import time |
|
from torch.nn import functional as F |
|
from contextlib import nullcontext |
|
import uuid |
|
from cosyvoice.utils.common import fade_in_out |
|
from cosyvoice.utils.file_utils import convert_onnx_to_trt |
|
|
|
|
|
class CosyVoiceModel: |
|
|
|
def __init__(self, |
|
llm: torch.nn.Module, |
|
flow: torch.nn.Module, |
|
hift: torch.nn.Module, |
|
fp16: bool): |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
self.llm = llm |
|
self.flow = flow |
|
self.hift = hift |
|
self.fp16 = fp16 |
|
self.llm.fp16 = fp16 |
|
self.flow.fp16 = fp16 |
|
if self.fp16 is True: |
|
self.llm.half() |
|
self.flow.half() |
|
self.token_min_hop_len = 2 * self.flow.input_frame_rate |
|
self.token_max_hop_len = 4 * self.flow.input_frame_rate |
|
self.token_overlap_len = 20 |
|
|
|
self.flow.decoder.estimator.static_chunk_size = 0 |
|
|
|
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256) |
|
self.mel_window = np.hamming(2 * self.mel_overlap_len) |
|
|
|
self.mel_cache_len = 20 |
|
self.source_cache_len = int(self.mel_cache_len * 256) |
|
|
|
self.speech_window = np.hamming(2 * self.source_cache_len) |
|
|
|
self.stream_scale_factor = 1 |
|
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf' |
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() |
|
self.lock = threading.Lock() |
|
|
|
self.tts_speech_token_dict = {} |
|
self.llm_end_dict = {} |
|
self.mel_overlap_dict = {} |
|
self.flow_cache_dict = {} |
|
self.hift_cache_dict = {} |
|
|
|
def load(self, llm_model, flow_model, hift_model): |
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True) |
|
self.llm.to(self.device).eval() |
|
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True) |
|
self.flow.to(self.device).eval() |
|
|
|
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()} |
|
self.hift.load_state_dict(hift_state_dict, strict=True) |
|
self.hift.to(self.device).eval() |
|
|
|
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model): |
|
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device) |
|
self.llm.text_encoder = llm_text_encoder |
|
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device) |
|
self.llm.llm = llm_llm |
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) |
|
self.flow.encoder = flow_encoder |
|
|
|
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16): |
|
assert torch.cuda.is_available(), 'tensorrt only supports gpu!' |
|
if not os.path.exists(flow_decoder_estimator_model): |
|
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16) |
|
if os.path.getsize(flow_decoder_estimator_model) == 0: |
|
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model)) |
|
del self.flow.decoder.estimator |
|
import tensorrt as trt |
|
with open(flow_decoder_estimator_model, 'rb') as f: |
|
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read()) |
|
if self.flow.decoder.estimator_engine is None: |
|
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model)) |
|
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context() |
|
|
|
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): |
|
with self.llm_context: |
|
if isinstance(text, Generator): |
|
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!' |
|
for i in self.llm.inference_bistream(text=text, |
|
prompt_text=prompt_text.to(self.device), |
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_speech_token=llm_prompt_speech_token.to(self.device), |
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), |
|
embedding=llm_embedding.to(self.device)): |
|
self.tts_speech_token_dict[uuid].append(i) |
|
else: |
|
for i in self.llm.inference(text=text.to(self.device), |
|
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_text=prompt_text.to(self.device), |
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_speech_token=llm_prompt_speech_token.to(self.device), |
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), |
|
embedding=llm_embedding.to(self.device)): |
|
self.tts_speech_token_dict[uuid].append(i) |
|
self.llm_end_dict[uuid] = True |
|
|
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0): |
|
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device), |
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_token=prompt_token.to(self.device), |
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_feat=prompt_feat.to(self.device), |
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), |
|
embedding=embedding.to(self.device), |
|
flow_cache=self.flow_cache_dict[uuid]) |
|
self.flow_cache_dict[uuid] = flow_cache |
|
|
|
|
|
if self.mel_overlap_dict[uuid].shape[2] != 0: |
|
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) |
|
|
|
if self.hift_cache_dict[uuid] is not None: |
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] |
|
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) |
|
else: |
|
hift_cache_source = torch.zeros(1, 1, 0) |
|
|
|
if finalize is False: |
|
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:] |
|
tts_mel = tts_mel[:, :, :-self.mel_overlap_len] |
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) |
|
if self.hift_cache_dict[uuid] is not None: |
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) |
|
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], |
|
'source': tts_source[:, :, -self.source_cache_len:], |
|
'speech': tts_speech[:, -self.source_cache_len:]} |
|
tts_speech = tts_speech[:, :-self.source_cache_len] |
|
else: |
|
if speed != 1.0: |
|
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode' |
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear') |
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) |
|
if self.hift_cache_dict[uuid] is not None: |
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) |
|
return tts_speech |
|
|
|
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), |
|
prompt_text=torch.zeros(1, 0, dtype=torch.int32), |
|
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), |
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), |
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): |
|
|
|
this_uuid = str(uuid.uuid1()) |
|
with self.lock: |
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False |
|
self.hift_cache_dict[this_uuid] = None |
|
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) |
|
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) |
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) |
|
p.start() |
|
if stream is True: |
|
token_hop_len = self.token_min_hop_len |
|
while True: |
|
time.sleep(0.1) |
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: |
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \ |
|
.unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
finalize=False) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
with self.lock: |
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] |
|
|
|
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) |
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: |
|
break |
|
p.join() |
|
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
finalize=True) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
else: |
|
|
|
p.join() |
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
finalize=True, |
|
speed=speed) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
with self.lock: |
|
self.tts_speech_token_dict.pop(this_uuid) |
|
self.llm_end_dict.pop(this_uuid) |
|
self.mel_overlap_dict.pop(this_uuid) |
|
self.hift_cache_dict.pop(this_uuid) |
|
self.flow_cache_dict.pop(this_uuid) |
|
torch.cuda.empty_cache() |
|
|
|
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs): |
|
|
|
this_uuid = str(uuid.uuid1()) |
|
with self.lock: |
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True |
|
self.hift_cache_dict[this_uuid] = None |
|
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) |
|
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) |
|
if stream is True: |
|
token_hop_len = self.token_min_hop_len |
|
while True: |
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: |
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \ |
|
.unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
finalize=False) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
with self.lock: |
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] |
|
|
|
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) |
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: |
|
break |
|
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
finalize=True) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
else: |
|
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
finalize=True, |
|
speed=speed) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
with self.lock: |
|
self.tts_speech_token_dict.pop(this_uuid) |
|
self.llm_end_dict.pop(this_uuid) |
|
self.mel_overlap_dict.pop(this_uuid) |
|
self.hift_cache_dict.pop(this_uuid) |
|
torch.cuda.empty_cache() |
|
|
|
|
|
class CosyVoice2Model(CosyVoiceModel): |
|
|
|
def __init__(self, |
|
llm: torch.nn.Module, |
|
flow: torch.nn.Module, |
|
hift: torch.nn.Module, |
|
fp16: bool): |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
self.llm = llm |
|
self.flow = flow |
|
self.hift = hift |
|
self.fp16 = fp16 |
|
self.llm.fp16 = fp16 |
|
self.flow.fp16 = fp16 |
|
if self.fp16 is True: |
|
self.llm.half() |
|
self.flow.half() |
|
self.token_hop_len = 2 * self.flow.input_frame_rate |
|
|
|
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate |
|
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio |
|
|
|
self.mel_cache_len = 8 |
|
self.source_cache_len = int(self.mel_cache_len * 480) |
|
|
|
self.speech_window = np.hamming(2 * self.source_cache_len) |
|
|
|
self.stream_scale_factor = 1 |
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() |
|
self.lock = threading.Lock() |
|
|
|
self.tts_speech_token_dict = {} |
|
self.llm_end_dict = {} |
|
self.hift_cache_dict = {} |
|
|
|
def load_jit(self, flow_encoder_model): |
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) |
|
self.flow.encoder = flow_encoder |
|
|
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0): |
|
tts_mel, _ = self.flow.inference(token=token.to(self.device), |
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_token=prompt_token.to(self.device), |
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), |
|
prompt_feat=prompt_feat.to(self.device), |
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), |
|
embedding=embedding.to(self.device), |
|
finalize=finalize) |
|
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:] |
|
|
|
if self.hift_cache_dict[uuid] is not None: |
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] |
|
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) |
|
else: |
|
hift_cache_source = torch.zeros(1, 1, 0) |
|
|
|
if finalize is False: |
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) |
|
if self.hift_cache_dict[uuid] is not None: |
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) |
|
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], |
|
'source': tts_source[:, :, -self.source_cache_len:], |
|
'speech': tts_speech[:, -self.source_cache_len:]} |
|
tts_speech = tts_speech[:, :-self.source_cache_len] |
|
else: |
|
if speed != 1.0: |
|
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode' |
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear') |
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) |
|
if self.hift_cache_dict[uuid] is not None: |
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) |
|
return tts_speech |
|
|
|
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), |
|
prompt_text=torch.zeros(1, 0, dtype=torch.int32), |
|
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), |
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), |
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): |
|
|
|
this_uuid = str(uuid.uuid1()) |
|
with self.lock: |
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False |
|
self.hift_cache_dict[this_uuid] = None |
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) |
|
p.start() |
|
if stream is True: |
|
token_offset = 0 |
|
while True: |
|
time.sleep(0.1) |
|
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len: |
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
token_offset=token_offset, |
|
finalize=False) |
|
token_offset += self.token_hop_len |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len: |
|
break |
|
p.join() |
|
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
token_offset=token_offset, |
|
finalize=True) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
else: |
|
|
|
p.join() |
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) |
|
this_tts_speech = self.token2wav(token=this_tts_speech_token, |
|
prompt_token=flow_prompt_speech_token, |
|
prompt_feat=prompt_speech_feat, |
|
embedding=flow_embedding, |
|
uuid=this_uuid, |
|
token_offset=0, |
|
finalize=True, |
|
speed=speed) |
|
yield {'tts_speech': this_tts_speech.cpu()} |
|
with self.lock: |
|
self.tts_speech_token_dict.pop(this_uuid) |
|
self.llm_end_dict.pop(this_uuid) |
|
torch.cuda.empty_cache() |
|
|