File size: 10,609 Bytes
e225ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pandas as pd
import torch
import numpy as np
from diffusers import StableDiffusionPipeline, DDIMScheduler
class ExperimentImageSet:
    def __init__(self, stable_diffusion, eta_0_image, attack_images, original_interference_images = None, interference_images = None, prompt: str = None, interference_prompt1 = None, interference_prompt2 = None, seed: int = None):
        self.stable_diffusion: np.ndarray = stable_diffusion
        self.eta_0_image: np.ndarray = eta_0_image
        self.attack_images: np.ndarray = attack_images
        self.original_interference_images: np.ndarray=original_interference_images
        self.interference_images: np.ndarray = interference_images
        self.target_prompt = prompt
        self.seed = seed
        self.interference_prompt1 = interference_prompt1
        self.interference_prompt2 = interference_prompt2
        self.clip_scores = None

def pipeline_erased_gen(target_csv_path, target_prompt, target_model_path, etas, num_prompts):
    # Load the target and interference CSV files
    target_data = pd.read_csv(target_csv_path)

    torch.cuda.empty_cache()
    variance_scales = [1.0]  # Adjust variance scales as needed

    # Placeholder for the total images and experiment sets
    total_images = []
    total_experiment_sets = []
    ct = 0
    original_pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
    original_pipeline.scheduler = DDIMScheduler.from_config(original_pipeline.scheduler.config)
    original_pipeline.safety_checker = None  # Disable the NSFW checker
    original_pipeline = original_pipeline.to("cuda")
    pipeline = StableDiffusionPipeline.from_pretrained(target_model_path)
    pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
    pipeline.safety_checker = None  # Disable the NSFW checker
    pipeline = pipeline.to("cuda")

    # Iterate through the target data along with interference data from the other two CSVs
    for index, row in target_data.head(num_prompts).iterrows():

        prompt = row['prompt']
        seed = int(row['evaluation_seed'])
        
        # Base stable diffusion image
        generator = torch.manual_seed(seed)

        
        stable_diffusion = original_pipeline(prompt, num_inference_steps=50, generator=generator, eta=0.0).images[0]
        stable_diffusion = np.array(stable_diffusion)  # Convert to np.ndarray
        total_images.append(stable_diffusion)

        # No attack image (eta=0, variance_scale=0)
        finetuned_no_attack = pipeline(prompt, num_inference_steps=50, generator=generator, eta=0.0).images[0]
        finetuned_no_attack = np.array(finetuned_no_attack)  # Convert to np.ndarray
        total_images.append(finetuned_no_attack)

        # Attack images with varying eta and variance scales
        attack_images = []
        for eta in etas:
            for variance_scale in variance_scales:
                attacked_image = pipeline(
                    prompt,
                    num_inference_steps=50,
                    generator=generator,
                    eta=eta,
                    variance_scale=variance_scale  # Assuming variance_scale is supported directly
                ).images[0]
                attacked_image = np.array(attacked_image)  # Convert to np.ndarray
                attack_images.append(attacked_image)
        attack_images = np.array(attack_images)  # Convert list to np.ndarray
        total_images.extend(attack_images)

        # Construct an experiment set with the images, including the interference images
        experiment_set = ExperimentImageSet(
            stable_diffusion=stable_diffusion,
            eta_0_image=finetuned_no_attack,
            attack_images=attack_images,
            original_interference_images= None,
            interference_images=None, 
            prompt=target_prompt,
            seed=seed,
            interference_prompt1=None,
            interference_prompt2=None
        )
        total_experiment_sets.append(experiment_set)

        ct += 1 + len(etas) * len(variance_scales)
        print(f"diffusion-count {ct} for prompt: {prompt}")

    # Convert total images to a NumPy array
    total_images = np.array(total_images)

    # Assuming fixed_images is needed as an array of final images
    fixed_images = [image for image in total_images]
    fixed_images = np.array(fixed_images)

    print("Image grid shape:", fixed_images.shape)

    return fixed_images, total_experiment_sets



def interference_gen(target_csv_path, interference_path1, interference_path2, target_model_path, etas, num_prompts):
    # Load the target and interference CSV files
    target_data = pd.read_csv(target_csv_path)
    interference_data1 = pd.read_csv(interference_path1)
    interference_data2 = pd.read_csv(interference_path2)

    torch.cuda.empty_cache()
    variance_scales = [1.0]  # Adjust variance scales as needed

    # Placeholder for the total images and experiment sets
    total_images = []
    total_experiment_sets = []
    ct = 0
    original_pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
    original_pipeline.scheduler = DDIMScheduler.from_config(original_pipeline.scheduler.config)
    original_pipeline.safety_checker = None  # Disable the NSFW checker
    original_pipeline = original_pipeline.to("cuda")
    pipeline = StableDiffusionPipeline.from_pretrained(target_model_path)
    pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
    pipeline.safety_checker = None  # Disable the NSFW checker
    pipeline = pipeline.to("cuda")

    # Iterate through the target data along with interference data from the other two CSVs
    for (index, row), (index1, row1), (index2, row2) in zip(
            target_data.head(num_prompts).iterrows(),
            interference_data1.head(num_prompts).iterrows(),
            interference_data2.head(num_prompts).iterrows()
        ):

        prompt = row['prompt']
        seed = int(row['evaluation_seed'])
        
        interference_prompt1 = row1['prompt']
        interference_seed1 = int(row1['evaluation_seed'])
        
        interference_prompt2 = row2['prompt']
        interference_seed2 = int(row2['evaluation_seed'])
        
        # Base stable diffusion image
        generator = torch.manual_seed(seed)

        
        stable_diffusion = original_pipeline(prompt, num_inference_steps=50, generator=generator, eta=0.0).images[0]
        stable_diffusion = np.array(stable_diffusion)  # Convert to np.ndarray
        total_images.append(stable_diffusion)

        # No attack image (eta=0, variance_scale=0)
        finetuned_no_attack = pipeline(prompt, num_inference_steps=50, generator=generator, eta=0.0).images[0]
        finetuned_no_attack = np.array(finetuned_no_attack)  # Convert to np.ndarray
        total_images.append(finetuned_no_attack)

        # Attack images with varying eta and variance scales
        attack_images = []
        for eta in etas:
            for variance_scale in variance_scales:
                attacked_image = pipeline(
                    prompt,
                    num_inference_steps=50,
                    generator=generator,
                    eta=eta,
                    variance_scale=variance_scale  # Assuming variance_scale is supported directly
                ).images[0]
                attacked_image = np.array(attacked_image)  # Convert to np.ndarray
                attack_images.append(attacked_image)
        attack_images = np.array(attack_images)  # Convert list to np.ndarray
        total_images.extend(attack_images)

        
        # Generate interference images using prompts and seeds from the interference CSVs
        generator1 = torch.manual_seed(interference_seed1)
        original_interference_image1 = pipeline(
            interference_prompt1,
            num_inference_steps=50,
            generator=generator1,
            eta=0.0,  # No attack
            variance_scale=0.0  # No variance
        ).images[0]

        original_interference_image1 = np.array(original_interference_image1)
        total_images.append(original_interference_image1)

        interference_image1 = pipeline(
            interference_prompt1,
            num_inference_steps=50,
            generator=generator1,
            eta=0.0,  # No attack
            variance_scale=0.0  # No variance
        ).images[0]
        interference_image1 = np.array(interference_image1)  # Convert to np.ndarray
        total_images.append(interference_image1)

        generator2 = torch.manual_seed(interference_seed2)
        original_interference_image2 = pipeline(
            interference_prompt2,
            num_inference_steps=50,
            generator=generator2,
            eta=0.0,  # No attack
            variance_scale=0.0  # No variance
        ).images[0]
        original_interference_image2 = np.array(original_interference_image2)  # Convert to np.ndarray
        total_images.append(original_interference_image2)

        interference_image2 = pipeline(
            interference_prompt2,
            num_inference_steps=50,
            generator=generator2,
            eta=0.0,  # No attack
            variance_scale=0.0  # No variance
        ).images[0]
        interference_image2 = np.array(interference_image2)  # Convert to np.ndarray
        total_images.append(interference_image2)

        # Construct an experiment set with the images, including the interference images
        experiment_set = ExperimentImageSet(
            stable_diffusion=stable_diffusion,
            eta_0_image=finetuned_no_attack,
            attack_images=attack_images,
            original_interference_images=[original_interference_image1, original_interference_image2],
            interference_images=[interference_image1, interference_image2],  # Adding interference images
            prompt="art in the style of Van Gogh",
            seed=seed,
            interference_prompt1="art in the style of Picasso",
            interference_prompt2="art in the style of Andy Warhol"
        )
        total_experiment_sets.append(experiment_set)

        ct += 1 + len(etas) * len(variance_scales)
        print(f"diffusion-count {ct} for prompt: {prompt}")

    # Convert total images to a NumPy array
    total_images = np.array(total_images)

    # Assuming fixed_images is needed as an array of final images
    fixed_images = [image for image in total_images]
    fixed_images = np.array(fixed_images)

    print("Image grid shape:", fixed_images.shape)

    return fixed_images, total_experiment_sets