Update README.md
Browse files
README.md
CHANGED
|
@@ -1,22 +1,56 @@
|
|
| 1 |
---
|
| 2 |
-
base_model:
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
-
- transformers
|
| 6 |
-
- unsloth
|
| 7 |
-
- llama
|
| 8 |
- trl
|
|
|
|
| 9 |
license: apache-2.0
|
| 10 |
language:
|
| 11 |
- en
|
| 12 |
---
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: meta-llama/meta-llama-3.1-8b-instruct
|
| 3 |
tags:
|
| 4 |
+
- llama adapter
|
|
|
|
|
|
|
|
|
|
| 5 |
- trl
|
| 6 |
+
- llama3.1 8b
|
| 7 |
license: apache-2.0
|
| 8 |
language:
|
| 9 |
- en
|
| 10 |
---
|
| 11 |
+
## Model Overview
|
| 12 |
+
A LoRA (Low-Rank Adaptation) fine-tuned adapter for the Llama-3.1-8B language model.
|
| 13 |
|
| 14 |
+
## Model Details
|
| 15 |
+
- Base Model: meta-llama/Llama-3.1-8B-instruct
|
| 16 |
+
- Adaptation Method: LoRA
|
| 17 |
|
| 18 |
+
## Training Configuration
|
| 19 |
+
### Training Hyperparameters
|
| 20 |
+
- Learning Rate: 50e-6
|
| 21 |
+
- Batch Size: 2
|
| 22 |
+
- Number of Epochs: 1
|
| 23 |
+
- Training Steps: ~2,000
|
| 24 |
+
- Precision: "BF16"
|
| 25 |
|
| 26 |
+
### LoRA Configuration
|
| 27 |
+
- Rank (r): 16
|
| 28 |
+
- Alpha: 16
|
| 29 |
+
- Target Modules:
|
| 30 |
+
- `q_proj` (Query projection)
|
| 31 |
+
- `k_proj` (Key projection)
|
| 32 |
+
- `v_proj` (Value projection)
|
| 33 |
+
- `o_proj` (Output projection)
|
| 34 |
+
- `up_proj` (Upsampling projection)
|
| 35 |
+
- `down_proj` (Downsampling projection)
|
| 36 |
+
- `gate_proj` (Gate projection)
|
| 37 |
|
| 38 |
+
## Usage
|
| 39 |
+
This adapter must be used in conjunction with the base Llama-3.1-8B model.
|
| 40 |
+
|
| 41 |
+
### Loading the Model
|
| 42 |
+
```python
|
| 43 |
+
from peft import PeftModel, PeftConfig
|
| 44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 45 |
+
|
| 46 |
+
# Load base model
|
| 47 |
+
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-instruct")
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-instruct")
|
| 49 |
+
|
| 50 |
+
# Load LoRA adapter
|
| 51 |
+
model = PeftModel.from_pretrained(base_model, "path_to_adapter")
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
## Limitations and Biases
|
| 55 |
+
- This adapter might inherits some limitations and biases present in the base Llama-3.1-8B-instruct model
|
| 56 |
+
- The training dataset size (~1k steps) is relatively small, which may limit the adapter's effectiveness
|