Update README.md
Browse files
README.md
CHANGED
|
@@ -3,52 +3,95 @@ library_name: transformers
|
|
| 3 |
license: apache-2.0
|
| 4 |
base_model: hustvl/yolos-tiny
|
| 5 |
tags:
|
| 6 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
model-index:
|
| 8 |
- name: practica_2
|
| 9 |
results: []
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
| 13 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
## Intended uses & limitations
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
-
The
|
| 36 |
-
- learning_rate: 1e-05
|
| 37 |
-
- train_batch_size: 8
|
| 38 |
-
- eval_batch_size: 8
|
| 39 |
-
- seed: 42
|
| 40 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 41 |
-
- lr_scheduler_type: linear
|
| 42 |
-
- num_epochs: 100
|
| 43 |
-
- mixed_precision_training: Native AMP
|
| 44 |
|
| 45 |
-
###
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
|
|
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
license: apache-2.0
|
| 4 |
base_model: hustvl/yolos-tiny
|
| 5 |
tags:
|
| 6 |
+
- object-detection
|
| 7 |
+
- transformers
|
| 8 |
+
- vision
|
| 9 |
+
- pytorch
|
| 10 |
+
- raccoon
|
| 11 |
+
- yolos
|
| 12 |
+
- fine-tuning
|
| 13 |
+
- huggingface
|
| 14 |
model-index:
|
| 15 |
- name: practica_2
|
| 16 |
results: []
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# practica_2 โ YOLOS Tiny fine-tuned on Raccoon Dataset ๐ฆ
|
|
|
|
| 20 |
|
| 21 |
+
This model is a fine-tuned version of [`hustvl/yolos-tiny`](https://huggingface.co/hustvl/yolos-tiny) on the [Raccoon Dataset](https://github.com/datitran/raccoon_dataset), converted to COCO format. It detects **raccoons** in images using a transformer-based object detection architecture.
|
| 22 |
|
| 23 |
+
## ๐ง Model description
|
| 24 |
|
| 25 |
+
YOLOS ("You Only Look One-level Series") is a pure Transformer-based object detector. This particular model uses the **Tiny** variant of YOLOS as the base, making it lightweight and efficient for quick inference on small datasets or low-resource environments.
|
| 26 |
|
| 27 |
+
This version has been fine-tuned to detect a single class: **raccoon**.
|
| 28 |
|
| 29 |
+
## ๐ Intended uses & limitations
|
| 30 |
|
| 31 |
+
### Use cases
|
| 32 |
+
- Wildlife monitoring (specifically raccoons)
|
| 33 |
+
- Educational/demo applications for transformer-based object detection
|
| 34 |
+
- Transfer learning starter for similar single-class detection tasks
|
| 35 |
|
| 36 |
+
### Limitations
|
| 37 |
+
- Trained only to detect raccoons โ not suitable for general-purpose detection.
|
| 38 |
+
- May underperform on complex or cluttered scenes due to dataset size.
|
| 39 |
+
- Limited generalization beyond the training distribution.
|
| 40 |
|
| 41 |
+
## ๐ Training and evaluation data
|
| 42 |
|
| 43 |
+
- **Dataset**: [Raccoon Dataset by Dat Tran](https://github.com/datitran/raccoon_dataset)
|
| 44 |
+
- **Format**: Converted from Pascal VOC to COCO
|
| 45 |
+
- **Size**: ~200 annotated images
|
| 46 |
+
- **Split**: 80% training, 20% test
|
| 47 |
|
| 48 |
+
## โ๏ธ Training procedure
|
| 49 |
|
| 50 |
+
The model was trained using the Hugging Face `Trainer` API with the following settings:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
### ๐งพ Hyperparameters
|
| 53 |
|
| 54 |
+
- **Base model**: `hustvl/yolos-tiny`
|
| 55 |
+
- **Epochs**: 100
|
| 56 |
+
- **Train batch size**: 8
|
| 57 |
+
- **Learning rate**: 1e-5
|
| 58 |
+
- **Weight decay**: 1e-4
|
| 59 |
+
- **Mixed precision**: Native AMP (`fp16=True`)
|
| 60 |
+
- **Scheduler**: Linear
|
| 61 |
+
- **Optimizer**: AdamW (betas=(0.9, 0.999), epsilon=1e-8)
|
| 62 |
|
| 63 |
+
### ๐ผ๏ธ Data augmentation
|
| 64 |
|
| 65 |
+
Applied using Albumentations:
|
| 66 |
+
- Resize (480x480)
|
| 67 |
+
- Horizontal flip
|
| 68 |
+
- Random brightness and contrast
|
| 69 |
|
| 70 |
+
### ๐งช Evaluation
|
| 71 |
+
|
| 72 |
+
Evaluation was performed on the 20% test split, but metrics were not included in this version of the model card. You can run custom evaluation using the `Trainer.evaluate()` method.
|
| 73 |
+
|
| 74 |
+
## ๐๏ธ Classes
|
| 75 |
+
|
| 76 |
+
| ID | Class |
|
| 77 |
+
|----|----------|
|
| 78 |
+
| 1 | raccoon |
|
| 79 |
+
|
| 80 |
+
## ๐ฆ Framework versions
|
| 81 |
+
|
| 82 |
+
- `transformers`: 4.52.2
|
| 83 |
+
- `pytorch`: 2.6.0+cu124
|
| 84 |
+
- `datasets`: 2.14.4
|
| 85 |
+
- `tokenizers`: 0.21.1
|
| 86 |
+
|
| 87 |
+
## โ๏ธ Citation
|
| 88 |
+
|
| 89 |
+
If you use this model, please consider citing the original YOLOS paper:
|
| 90 |
+
|
| 91 |
+
```bibtex
|
| 92 |
+
@inproceedings{fang2021you,
|
| 93 |
+
title={You Only Look One-level Feature},
|
| 94 |
+
author={Fang, Wanli and Yang, Xiaolin and Wang, Qiang},
|
| 95 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
| 96 |
+
year={2021}
|
| 97 |
+
}
|