#pragma once #include #include bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability); void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, torch::Tensor const& b_scales, c10::optional const& bias); void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, torch::Tensor const& b_scales, torch::Tensor const& azp_adj, c10::optional const& azp, c10::optional const& bias); void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor const& scale, c10::optional const& azp); void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scales, c10::optional const& azp); torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight, torch::Tensor b_gptq_qzeros, torch::Tensor b_gptq_scales, torch::Tensor b_g_idx, bool use_exllama, int64_t bit); void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit); void static_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor const& scale); void dynamic_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale); void dynamic_per_token_scaled_fp8_quant( torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale, c10::optional const& scale_ub); torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t num_bits, int64_t size_m, int64_t size_n, int64_t size_k); // GPTQ-Marlin torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, int64_t size_n, int64_t num_bits); torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, c10::SymInt size_k, c10::SymInt size_n, int64_t num_bits); torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& b_zeros, torch::Tensor& g_idx, torch::Tensor& perm, torch::Tensor& workspace, vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, bool has_zp, bool use_fp32_reduce, bool is_zp_float); torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, int64_t num_bits); torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight, torch::Tensor& perm, c10::SymInt size_k, c10::SymInt size_n, int64_t num_bits); // Marlin torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k); torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_meta, torch::Tensor& b_scales, torch::Tensor& workspace, vllm::ScalarTypeId const b_q_type_id, int64_t size_m, int64_t size_n, int64_t size_k); torch::Tensor marlin_qqq_gemm(torch::Tensor const& a, torch::Tensor const& b_q_weight, torch::Tensor const& s_tok, torch::Tensor const& s_ch, torch::Tensor const& s_group, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k);