#include #include "registration.h" #include "torch_binding.h" TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // The default behavior in PyTorch 2.6 is "requires_contiguous", so we need // to override this for many GEMMs with the following tag. Otherwise, // torch.compile will force all input tensors to be contiguous(), which // will break many custom ops that require column-major weight matrices. // TODO: remove this for PyTorch 2.8, when the default is planned to switch // to match exact eager-mode strides. at::Tag stride_tag = at::Tag::needs_fixed_stride_order; #ifndef USE_ROCM // CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column // quantization, as well as bias ops.def( "cutlass_scaled_mm(Tensor! out, Tensor a," " Tensor b, Tensor a_scales," " Tensor b_scales, Tensor? bias) -> ()", {stride_tag}); ops.impl("cutlass_scaled_mm", torch::kCUDA, &cutlass_scaled_mm); // CUTLASS w8a8 GEMM, supporting asymmetric per-tensor or per-row/column // quantization. ops.def( "cutlass_scaled_mm_azp(Tensor! out, Tensor a," " Tensor b, Tensor a_scales," " Tensor b_scales, Tensor azp_adj," " Tensor? azp, Tensor? bias) -> ()", {stride_tag}); ops.impl("cutlass_scaled_mm_azp", torch::kCUDA, &cutlass_scaled_mm_azp); // Check if cutlass scaled_mm is supported for CUDA devices of the given // capability ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool"); ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8); // Check if cutlass scaled_mm supports block quantization (used by DeepSeekV3) ops.def( "cutlass_scaled_mm_supports_block_fp8(int cuda_device_capability) -> " "bool"); ops.impl("cutlass_scaled_mm_supports_block_fp8", &cutlass_scaled_mm_supports_block_fp8); #endif // Compute FP8 quantized tensor for given scaling factor. ops.def( "static_scaled_fp8_quant(Tensor! result, Tensor input, Tensor scale) -> " "()"); ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant); // Compute dynamic-per-tensor FP8 quantized tensor and scaling factor. ops.def( "dynamic_scaled_fp8_quant(Tensor! result, Tensor input, Tensor! scale) " "-> " "()"); ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant); // Compute dynamic-per-token FP8 quantized tensor and scaling factor. ops.def( "dynamic_per_token_scaled_fp8_quant(Tensor! result, Tensor input, " "Tensor! scale, Tensor? scale_ub) -> " "()"); ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, &dynamic_per_token_scaled_fp8_quant); // Compute int8 quantized tensor for given scaling factor. ops.def( "static_scaled_int8_quant(Tensor! result, Tensor input, Tensor scale," "Tensor? azp) -> ()"); ops.impl("static_scaled_int8_quant", torch::kCUDA, &static_scaled_int8_quant); // Compute int8 quantized tensor and scaling factor ops.def( "dynamic_scaled_int8_quant(Tensor! result, Tensor input, Tensor! scale, " "Tensor!? azp) -> ()"); ops.impl("dynamic_scaled_int8_quant", torch::kCUDA, &dynamic_scaled_int8_quant); #ifndef USE_ROCM // awq_marlin repack from AWQ. ops.def( "awq_marlin_repack(Tensor b_q_weight, SymInt size_k, " "SymInt size_n, int num_bits) -> Tensor"); // gptq_marlin Optimized Quantized GEMM for GPTQ. ops.def( "gptq_marlin_gemm(Tensor a, Tensor? c_or_none, Tensor b_q_weight, " "Tensor b_scales, Tensor? global_scale, Tensor? b_zeros_or_none, Tensor? " "g_idx_or_none, Tensor? perm_or_none, Tensor workspace, int b_q_type, " "SymInt size_m, SymInt size_n, SymInt size_k, bool is_k_full, " "bool use_atomic_add, bool use_fp32_reduce, bool is_zp_float) -> Tensor", {stride_tag}); // gptq_marlin repack from GPTQ. ops.def( "gptq_marlin_repack(Tensor b_q_weight, Tensor perm, " "SymInt size_k, SymInt size_n, int num_bits) -> Tensor"); // Marlin (Dense) Optimized Quantized GEMM for GPTQ. ops.def( "marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " "Tensor! workspace, SymInt size_m, SymInt size_n, SymInt size_k) -> " "Tensor", {stride_tag}); // Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ. ops.def( "gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, " "Tensor b_scales, Tensor workspace, " "int b_q_type, " "SymInt size_m, SymInt size_n, SymInt size_k) -> Tensor", {stride_tag}); // marlin_qqq_gemm for QQQ. ops.def( "marlin_qqq_gemm(Tensor a, Tensor b_q_weight, " "Tensor s_tok, Tensor s_ch, Tensor s_group, " "Tensor! workspace, SymInt size_m, SymInt size_n, " "SymInt size_k) -> Tensor", {stride_tag}); #endif } #ifndef USE_ROCM TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, ops) { ops.impl("awq_marlin_repack", &awq_marlin_repack); ops.impl("gptq_marlin_24_gemm", &gptq_marlin_24_gemm); ops.impl("gptq_marlin_gemm", &gptq_marlin_gemm); ops.impl("gptq_marlin_repack", &gptq_marlin_repack); ops.impl("marlin_gemm", &marlin_gemm); ops.impl("marlin_qqq_gemm", &marlin_qqq_gemm); } TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, Meta, ops) { ops.impl("awq_marlin_repack", &awq_marlin_repack_meta); ops.impl("gptq_marlin_repack", &gptq_marlin_repack_meta); } #endif REGISTER_EXTENSION(TORCH_EXTENSION_NAME)