|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <torch/all.h> |
|
|
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <c10/cuda/CUDAGuard.h> |
|
#include <cuda.h> |
|
#include <cuda_fp16.h> |
|
#include <cuda_runtime.h> |
|
|
|
#include <iostream> |
|
|
|
#include "../dense/common/base.h" |
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 |
|
#include "../dense/common/mem.h" |
|
#endif |
|
|
|
template <typename T> |
|
inline std::string str(T x) { |
|
return std::to_string(x); |
|
} |
|
|
|
namespace { |
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 |
|
|
|
using I4 = Vec<int, 4>; |
|
|
|
|
|
|
|
using FragA = Vec<uint32_t, 2>; |
|
using FragB = Vec<uint32_t, 1>; |
|
using FragC = Vec<int, 4>; |
|
using FragS_GROUP = Vec<half2, 1>; |
|
using FragS_CHANNEL = |
|
Vec<float, 2>; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__device__ inline void cp_async1(void* smem_ptr, const void* glob_ptr) { |
|
const int BYTES = 4; |
|
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr)); |
|
asm volatile( |
|
"{\n" |
|
" cp.async.ca.shared.global [%0], [%1], %2;\n" |
|
"}\n" ::"r"(smem), |
|
"l"(glob_ptr), "n"(BYTES)); |
|
} |
|
|
|
|
|
|
|
__device__ inline void mma(const FragA& a_frag, const FragB& frag_b, |
|
FragC& frag_c) { |
|
const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag); |
|
const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b); |
|
int* c = reinterpret_cast<int*>(&frag_c); |
|
asm volatile( |
|
"mma.sync.aligned.m16n8k16.row.col.satfinite.s32.s8.s8.s32 " |
|
"{%0,%1,%2,%3}, {%4,%5}, {%6}, {%7,%8,%9,%10};\n" |
|
: "=r"(c[0]), "=r"(c[1]), "=r"(c[2]), "=r"(c[3]) |
|
: "r"(a[0]), "r"(a[1]), "r"(b[0]), "r"(c[0]), "r"(c[1]), "r"(c[2]), |
|
"r"(c[3])); |
|
} |
|
|
|
|
|
|
|
__device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) { |
|
uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a); |
|
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr)); |
|
asm volatile("ldmatrix.sync.aligned.m8n8.x2.shared.b16 {%0,%1}, [%2];\n" |
|
: "=r"(a[0]), "=r"(a[1]) |
|
: "r"(smem)); |
|
} |
|
|
|
inline __device__ half2 float2_to_half2(float2 f) { |
|
uint32_t res; |
|
|
|
uint16_t h0, h1; |
|
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(h0) : "f"(f.x)); |
|
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(h1) : "f"(f.y)); |
|
asm volatile("mov.b32 %0, {%1, %2};\n" : "=r"(res) : "h"(h0), "h"(h1)); |
|
return reinterpret_cast<half2&>(res); |
|
} |
|
|
|
inline __device__ float int32_to_float(int h) { |
|
float res; |
|
asm volatile("cvt.rn.f32.s32 %0, %1;\n" : "=f"(res) : "r"(h)); |
|
return res; |
|
} |
|
|
|
|
|
|
|
|
|
template <int lut> |
|
__device__ inline int lop3(int a, int b, int c) { |
|
int res; |
|
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" |
|
: "=r"(res) |
|
: "r"(a), "r"(b), "r"(c), "n"(lut)); |
|
return res; |
|
} |
|
|
|
|
|
|
|
__device__ inline FragB dequant_per_channel(int q) { |
|
static constexpr int MASK = 0xf0f0f0f0; |
|
FragB frag_b; |
|
frag_b[0] = (q & MASK); |
|
return frag_b; |
|
} |
|
|
|
|
|
|
|
__device__ inline FragB dequant_per_group(int q, FragS_GROUP& frag_s, int i) { |
|
static constexpr uint32_t LO = 0x000f000f; |
|
static constexpr uint32_t HI = 0x00f000f0; |
|
static constexpr uint32_t EX = 0x64006400; |
|
|
|
uint32_t t0 = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX); |
|
uint32_t t1 = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX); |
|
|
|
|
|
static constexpr uint32_t SUB = 0x64086408; |
|
static constexpr uint32_t MUL = 0x2c002c00; |
|
static constexpr uint32_t ADD = 0xd480d480; |
|
*reinterpret_cast<half2*>(&t0) = __hsub2( |
|
*reinterpret_cast<half2*>(&t0), *reinterpret_cast<const half2*>(&SUB)); |
|
*reinterpret_cast<half2*>(&t1) = __hfma2( |
|
*reinterpret_cast<half2*>(&t1), *reinterpret_cast<const half2*>(&MUL), |
|
*reinterpret_cast<const half2*>(&ADD)); |
|
|
|
uint16_t s = reinterpret_cast<uint16_t*>(&frag_s)[i]; |
|
uint32_t double_s; |
|
|
|
asm volatile("mov.b32 %0, {%1, %2};\n" : "=r"(double_s) : "h"(s), "h"(s)); |
|
|
|
|
|
static constexpr uint32_t MAGIC_NUM = 0x64806480; |
|
*reinterpret_cast<half2*>(&t0) = __hfma2( |
|
*reinterpret_cast<half2*>(&t0), *reinterpret_cast<half2*>(&double_s), |
|
*reinterpret_cast<const half2*>(&MAGIC_NUM)); |
|
*reinterpret_cast<half2*>(&t1) = __hfma2( |
|
*reinterpret_cast<half2*>(&t1), *reinterpret_cast<half2*>(&double_s), |
|
*reinterpret_cast<const half2*>(&MAGIC_NUM)); |
|
|
|
|
|
FragB frag_b; |
|
uint32_t uint8s; |
|
static constexpr uint32_t MASK_0246 = 0x6420; |
|
static constexpr uint32_t UINT8s_TO_INT8s_MASK = 0x80808080; |
|
asm volatile("prmt.b32 %0,%1,%2,%3;\n" |
|
: "=r"(uint8s) |
|
: "r"(t0), "r"(t1), "n"(MASK_0246)); |
|
frag_b[0] = (uint8s ^ UINT8s_TO_INT8s_MASK); |
|
return frag_b; |
|
} |
|
|
|
template <const int threads, |
|
const int thread_m_blocks, |
|
|
|
|
|
const int thread_n_blocks, |
|
const int thread_k_blocks, |
|
const int stages, |
|
|
|
const int group_blocks = -1 |
|
|
|
> |
|
__global__ void Marlin( |
|
const int4* __restrict__ A, |
|
const int4* __restrict__ B, |
|
int4* __restrict__ C, |
|
|
|
|
|
int4* __restrict__ D, |
|
const float* __restrict__ s_tok, |
|
|
|
const int4* __restrict__ s_ch, |
|
|
|
const int4* __restrict__ s_group, |
|
|
|
|
|
int prob_m, |
|
int prob_n, |
|
int prob_k, |
|
int* locks |
|
) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int parallel = 1; |
|
if (prob_m > 16 * thread_m_blocks) { |
|
parallel = prob_m / (16 * thread_m_blocks); |
|
prob_m = 16 * thread_m_blocks; |
|
} |
|
|
|
int k_tiles = prob_k / 16 / thread_k_blocks; |
|
int n_tiles = prob_n / 16 / thread_n_blocks; |
|
int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); |
|
|
|
|
|
|
|
if constexpr (group_blocks != -1) |
|
iters = (group_blocks / thread_k_blocks) * |
|
ceildiv(iters, (group_blocks / thread_k_blocks)); |
|
|
|
int slice_row = (iters * blockIdx.x) % k_tiles; |
|
int slice_col_par = (iters * blockIdx.x) / k_tiles; |
|
int slice_col = slice_col_par; |
|
int slice_iters; |
|
int slice_count = |
|
0; |
|
int slice_idx; |
|
|
|
|
|
|
|
|
|
if (slice_col_par >= n_tiles) { |
|
A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 16; |
|
C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 4; |
|
D += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8; |
|
s_tok += (slice_col_par / n_tiles) * 16 * thread_m_blocks; |
|
locks += (slice_col_par / n_tiles) * n_tiles; |
|
slice_col = slice_col_par % n_tiles; |
|
} |
|
|
|
|
|
|
|
auto init_slice = [&]() { |
|
slice_iters = |
|
iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); |
|
if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; |
|
if (slice_iters == 0) return; |
|
if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; |
|
slice_count = 1; |
|
slice_idx = 0; |
|
int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); |
|
if (col_first <= k_tiles * (slice_col_par + 1)) { |
|
int col_off = col_first - k_tiles * slice_col_par; |
|
slice_count = ceildiv(k_tiles - col_off, iters); |
|
if (col_off > 0) slice_count++; |
|
int delta_first = iters * blockIdx.x - col_first; |
|
if (delta_first < 0 || (col_off == 0 && delta_first == 0)) |
|
slice_idx = slice_count - 1; |
|
else { |
|
slice_idx = slice_count - 1 - delta_first / iters; |
|
if (col_off > 0) slice_idx--; |
|
} |
|
} |
|
if (slice_col == n_tiles) { |
|
A += 16 * thread_m_blocks * prob_k / 16; |
|
C += 16 * thread_m_blocks * prob_n / 4; |
|
D += 16 * thread_m_blocks * prob_n / 8; |
|
s_tok += 16 * thread_m_blocks; |
|
locks += n_tiles; |
|
slice_col = 0; |
|
} |
|
}; |
|
init_slice(); |
|
|
|
int a_gl_stride = prob_k / 16; |
|
|
|
|
|
constexpr int a_sh_stride = |
|
16 * thread_k_blocks / 16; |
|
constexpr int a_gl_rd_delta_o = |
|
16 * thread_k_blocks / |
|
16; |
|
int a_gl_rd_delta_i = |
|
a_gl_stride * |
|
(threads / a_gl_rd_delta_o); |
|
constexpr int a_sh_wr_delta = |
|
a_sh_stride * |
|
(threads / a_gl_rd_delta_o); |
|
constexpr int a_sh_rd_delta_o = |
|
1 * ((threads / 32) / |
|
(thread_n_blocks / 4)); |
|
constexpr int a_sh_rd_delta_i = |
|
a_sh_stride * 16; |
|
constexpr int a_sh_stage = |
|
a_sh_stride * (16 * thread_m_blocks); |
|
constexpr int a_sh_wr_iters = |
|
ceildiv(a_sh_stage, |
|
a_sh_wr_delta); |
|
|
|
int b_gl_stride = 16 * prob_n / 32; |
|
constexpr int b_sh_stride = 32 * thread_n_blocks / 4; |
|
int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; |
|
int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride); |
|
constexpr int b_sh_wr_delta = threads; |
|
constexpr int b_sh_rd_delta = threads; |
|
constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; |
|
constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; |
|
|
|
constexpr int s_tok_sh_stride = 16 * thread_m_blocks; |
|
|
|
constexpr int s_ch_sh_stride = 16 * thread_n_blocks / 4; |
|
|
|
int s_group_gl_stride = prob_n / 8; |
|
constexpr int s_group_sh_stride = 16 * thread_n_blocks / 8; |
|
constexpr int s_group_sh_stage = s_group_sh_stride; |
|
int s_group_gl_rd_delta = s_group_gl_stride; |
|
|
|
|
|
int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + |
|
(threadIdx.x % a_gl_rd_delta_o); |
|
a_gl_rd += a_gl_rd_delta_o * slice_row; |
|
|
|
int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + |
|
(threadIdx.x % a_gl_rd_delta_o); |
|
|
|
|
|
int a_sh_rd = a_sh_stride * ((threadIdx.x % 32) % 16); |
|
a_sh_rd += 1 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); |
|
|
|
int b_gl_rd = |
|
b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride); |
|
b_gl_rd += b_sh_stride * slice_col; |
|
b_gl_rd += b_gl_rd_delta_o * slice_row; |
|
int b_sh_wr = threadIdx.x; |
|
int b_sh_rd = threadIdx.x; |
|
|
|
int s_tok_gl_rd = threadIdx.x; |
|
|
|
|
|
|
|
|
|
|
|
|
|
int s_tok_sh_wr = |
|
(threadIdx.x / 16) * 16 + (threadIdx.x % 8) * 2 + (threadIdx.x % 16) / 8; |
|
int s_tok_sh_rd = (threadIdx.x % 32) / 4; |
|
bool s_tok_sh_wr_pred = threadIdx.x < prob_m; |
|
|
|
int s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x; |
|
int s_ch_sh_wr = threadIdx.x; |
|
int s_ch_sh_rd = 16 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
2 * ((threadIdx.x % 32) % 4); |
|
bool s_ch_sh_wr_pred = threadIdx.x < s_ch_sh_stride; |
|
|
|
int s_group_gl_rd, s_group_sh_wr, s_group_sh_rd; |
|
bool s_group_sh_wr_pred; |
|
if constexpr (group_blocks != -1) { |
|
s_group_gl_rd = |
|
s_group_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + |
|
s_group_sh_stride * slice_col + threadIdx.x; |
|
s_group_sh_wr = threadIdx.x; |
|
|
|
s_group_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
(threadIdx.x % 32) / 4; |
|
s_group_sh_wr_pred = threadIdx.x < s_group_sh_stride; |
|
} |
|
|
|
|
|
|
|
|
|
bool a_sh_wr_pred[a_sh_wr_iters]; |
|
#pragma unroll |
|
for (int i = 0; i < a_sh_wr_iters; i++) |
|
a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto transform_a = [&](int i) { |
|
int row = i / a_gl_rd_delta_o; |
|
return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; |
|
}; |
|
|
|
|
|
|
|
int a_sh_wr_trans[a_sh_wr_iters]; |
|
#pragma unroll |
|
for (int i = 0; i < a_sh_wr_iters; i++) |
|
a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); |
|
int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) { |
|
#pragma unroll |
|
for (int j = 0; j < thread_m_blocks; j++) |
|
a_sh_rd_trans[i][j] = |
|
transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
const int4* B_ptr[b_sh_wr_iters]; |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) |
|
B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; |
|
|
|
extern __shared__ int4 sh[]; |
|
|
|
|
|
|
|
int4* sh_a = sh; |
|
int4* sh_b = sh_a + (stages * a_sh_stage); |
|
int4* sh_s_tok = sh_b + (stages * b_sh_stage); |
|
int4* sh_s_ch = sh_s_tok + s_tok_sh_stride; |
|
int4* sh_s_group = sh_s_ch + s_ch_sh_stride; |
|
|
|
|
|
FragA frag_a[2][thread_m_blocks]; |
|
I4 frag_b_quant[2]; |
|
FragC frag_c[thread_m_blocks][4][2]; |
|
FragS_GROUP frag_s_group[2][4]; |
|
FragS_CHANNEL frag_s_tok[thread_m_blocks]; |
|
FragS_CHANNEL frag_s_ch[2][4]; |
|
|
|
|
|
auto zero_accums = [&]() { |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) |
|
reinterpret_cast<int*>(frag_c)[i] = 0; |
|
}; |
|
|
|
|
|
|
|
auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { |
|
if (pred) { |
|
int4* sh_a_stage = sh_a + a_sh_stage * pipe; |
|
#pragma unroll |
|
for (int i = 0; i < a_sh_wr_iters; i++) { |
|
cp_async4_pred( |
|
&sh_a_stage[a_sh_wr_trans[i]], |
|
&A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off], |
|
a_sh_wr_pred[i]); |
|
} |
|
int4* sh_b_stage = sh_b + b_sh_stage * pipe; |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) { |
|
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]); |
|
B_ptr[i] += b_gl_rd_delta_o; |
|
} |
|
|
|
if constexpr (group_blocks != -1) { |
|
if (pipe % (group_blocks / thread_k_blocks) == 0) { |
|
int4* sh_s_group_stage = sh_s_group + s_group_sh_stage * pipe; |
|
if (s_group_sh_wr_pred) |
|
cp_async4(&sh_s_group_stage[s_group_sh_wr], |
|
&s_group[s_group_gl_rd]); |
|
s_group_gl_rd += s_group_gl_rd_delta; |
|
} |
|
} |
|
} |
|
|
|
|
|
cp_async_fence(); |
|
}; |
|
|
|
|
|
auto wait_for_stage = [&]() { |
|
|
|
|
|
|
|
|
|
cp_async_wait<stages - 2>(); |
|
__syncthreads(); |
|
}; |
|
|
|
|
|
|
|
auto fetch_to_registers = [&](int k, int pipe) { |
|
|
|
|
|
|
|
|
|
if constexpr (group_blocks != -1) { |
|
int4* sh_s_group_stage = |
|
sh_s_group + |
|
s_group_sh_stage * ((group_blocks / thread_k_blocks) * |
|
(pipe / (group_blocks / thread_k_blocks))); |
|
reinterpret_cast<int4*>(&frag_s_group[k % 2])[0] = |
|
sh_s_group_stage[s_group_sh_rd]; |
|
} |
|
int4* sh_a_stage = sh_a + a_sh_stage * pipe; |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) |
|
ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); |
|
int4* sh_b_stage = sh_b + b_sh_stage * pipe; |
|
frag_b_quant[k % 2] = *reinterpret_cast<I4*>( |
|
&sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]); |
|
}; |
|
|
|
|
|
auto matmul = [&](int k) { |
|
|
|
|
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
int b_quant = frag_b_quant[k % 2][j]; |
|
|
|
FragB frag_b0, frag_b1; |
|
|
|
|
|
if constexpr (group_blocks != -1) { |
|
int b_quant_shift = b_quant >> 8; |
|
frag_b0 = dequant_per_group(b_quant, frag_s_group[k % 2][j], 0); |
|
frag_b1 = dequant_per_group(b_quant_shift, frag_s_group[k % 2][j], 1); |
|
} else { |
|
int b_quant_shift = b_quant << 4; |
|
frag_b0 = dequant_per_channel(b_quant); |
|
frag_b1 = dequant_per_channel(b_quant_shift); |
|
} |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) { |
|
mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); |
|
mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
auto thread_block_reduce = [&]() { |
|
constexpr int red_off = threads / b_sh_stride / 2; |
|
if (red_off >= 1) { |
|
int red_idx = threadIdx.x / b_sh_stride; |
|
constexpr int red_sh_stride = b_sh_stride * 4 * 2; |
|
constexpr int red_sh_delta = b_sh_stride; |
|
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) + |
|
(threadIdx.x % b_sh_stride); |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
for (int m_block = 0; m_block < thread_m_blocks; m_block++) { |
|
#pragma unroll |
|
for (int i = red_off; i > 0; i /= 2) { |
|
if (i <= red_idx && red_idx < 2 * i) { |
|
#pragma unroll |
|
for (int j = 0; j < 4 * 2; j++) { |
|
int red_sh_wr = |
|
red_sh_delta * j + (red_sh_rd - red_sh_stride * i); |
|
if (i < red_off) { |
|
int* c_rd = |
|
reinterpret_cast<int*>(&sh[red_sh_delta * j + red_sh_rd]); |
|
int* c_wr = reinterpret_cast<int*>(&sh[red_sh_wr]); |
|
#pragma unroll |
|
for (int k = 0; k < 4; k++) |
|
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] += |
|
c_rd[k] + c_wr[k]; |
|
} |
|
sh[red_sh_wr] = |
|
reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j]; |
|
} |
|
} |
|
__syncthreads(); |
|
} |
|
if (red_idx == 0) { |
|
#pragma unroll |
|
for (int i = 0; i < 4 * 2; i++) { |
|
int* c_rd = |
|
reinterpret_cast<int*>(&sh[red_sh_delta * i + red_sh_rd]); |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) |
|
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] += |
|
c_rd[j]; |
|
} |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto global_reduce = [&](bool first = false, bool last = false) { |
|
|
|
|
|
|
|
constexpr int active_threads = 32 * thread_n_blocks / 4; |
|
if (threadIdx.x < active_threads) { |
|
int c_gl_stride = prob_n / 4; |
|
int c_gl_wr_delta_o = 8 * c_gl_stride; |
|
int c_gl_wr_delta_i = 8 * (active_threads / 32); |
|
int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + |
|
8 * (threadIdx.x / 32) + (threadIdx.x % 4) * 2; |
|
c_gl_wr += (4 * thread_n_blocks) * slice_col; |
|
constexpr int c_sh_wr_delta = active_threads * 2; |
|
int c_sh_wr = 2 * threadIdx.x; |
|
|
|
int row = (threadIdx.x % 32) / 4; |
|
|
|
if (!first) { |
|
|
|
|
|
|
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks * 4; i++) { |
|
cp_async4_pred( |
|
&sh[c_sh_wr + c_sh_wr_delta * i], |
|
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + |
|
c_gl_wr_delta_i * (i % 2)], |
|
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m); |
|
cp_async4_pred( |
|
&sh[c_sh_wr + c_sh_wr_delta * i + 1], |
|
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + |
|
c_gl_wr_delta_i * (i % 2) + 1], |
|
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m); |
|
} |
|
cp_async_fence(); |
|
cp_async_wait<0>(); |
|
} |
|
|
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks * 4; i++) { |
|
if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) { |
|
if (!first) { |
|
int4 d_red1 = sh[c_sh_wr + i * c_sh_wr_delta]; |
|
int4 d_red2 = sh[c_sh_wr + i * c_sh_wr_delta + 1]; |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
reinterpret_cast<int*>( |
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += |
|
reinterpret_cast<int*>(&d_red1)[j]; |
|
} |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
reinterpret_cast<int*>( |
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * (j + 4) + (i % 4)] += |
|
reinterpret_cast<int*>(&d_red2)[j]; |
|
} |
|
} |
|
if (!last) { |
|
int4 d1, d2; |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
reinterpret_cast<int*>(&d1)[j] = reinterpret_cast<int*>( |
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]; |
|
} |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
reinterpret_cast<int*>(&d2)[j] = reinterpret_cast<int*>( |
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * (j + 4) + (i % 4)]; |
|
} |
|
C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] = |
|
d1; |
|
C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2) + |
|
1] = d2; |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
auto write_result = [&]() { |
|
int d_gl_stride = prob_n / 8; |
|
constexpr int d_sh_stride = 2 * thread_n_blocks + 1; |
|
int d_gl_wr_delta = d_gl_stride * (threads / (2 * thread_n_blocks)); |
|
constexpr int d_sh_rd_delta = |
|
d_sh_stride * (threads / (2 * thread_n_blocks)); |
|
|
|
int d_gl_wr = d_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + |
|
(threadIdx.x % (2 * thread_n_blocks)); |
|
d_gl_wr += (2 * thread_n_blocks) * slice_col; |
|
int d_sh_wr = |
|
(4 * d_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; |
|
d_sh_wr += 32 * (threadIdx.x / 32); |
|
int d_sh_rd = d_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + |
|
(threadIdx.x % (2 * thread_n_blocks)); |
|
|
|
int d_gl_wr_end = d_gl_stride * prob_m; |
|
|
|
|
|
|
|
auto write = [&](int idx, int c0, int c1, float a_s, FragS_CHANNEL& w_s) { |
|
float2 deq_res; |
|
deq_res.x = int32_to_float(c0) * w_s[0] * a_s; |
|
deq_res.y = int32_to_float(c1) * w_s[1] * a_s; |
|
((half2*)sh)[idx] = float2_to_half2(deq_res); |
|
}; |
|
|
|
if (threadIdx.x / 32 < thread_n_blocks / 4) { |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) { |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
int wr = d_sh_wr + 8 * j; |
|
write(wr + (4 * d_sh_stride) * 0 + 0, frag_c[i][j][0][0], |
|
frag_c[i][j][0][1], frag_s_tok[i][0], |
|
frag_s_ch[j / 2][2 * (j % 2) + 0]); |
|
write(wr + (4 * d_sh_stride) * 8 + 0, frag_c[i][j][0][2], |
|
frag_c[i][j][0][3], frag_s_tok[i][1], |
|
frag_s_ch[j / 2][2 * (j % 2) + 0]); |
|
write(wr + (4 * d_sh_stride) * 0 + 4, frag_c[i][j][1][0], |
|
frag_c[i][j][1][1], frag_s_tok[i][0], |
|
frag_s_ch[j / 2][2 * (j % 2) + 1]); |
|
write(wr + (4 * d_sh_stride) * 8 + 4, frag_c[i][j][1][2], |
|
frag_c[i][j][1][3], frag_s_tok[i][1], |
|
frag_s_ch[j / 2][2 * (j % 2) + 1]); |
|
} |
|
d_sh_wr += 16 * (4 * d_sh_stride); |
|
} |
|
} |
|
__syncthreads(); |
|
|
|
#pragma unroll |
|
for (int i = 0; |
|
i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); |
|
i++) { |
|
if (d_gl_wr < d_gl_wr_end) { |
|
D[d_gl_wr] = sh[d_sh_rd]; |
|
d_gl_wr += d_gl_wr_delta; |
|
d_sh_rd += d_sh_rd_delta; |
|
} |
|
} |
|
}; |
|
|
|
|
|
auto start_pipes = [&]() { |
|
#pragma unroll |
|
for (int i = 0; i < stages - 1; i++) fetch_to_shared(i, i, i < slice_iters); |
|
zero_accums(); |
|
wait_for_stage(); |
|
fetch_to_registers(0, 0); |
|
a_gl_rd += a_gl_rd_delta_o * (stages - 1); |
|
}; |
|
start_pipes(); |
|
|
|
|
|
while (slice_iters) { |
|
|
|
|
|
|
|
#pragma unroll |
|
for (int pipe = 0; pipe < stages;) { |
|
#pragma unroll |
|
for (int k = 0; k < b_sh_wr_iters; k++) { |
|
fetch_to_registers(k + 1, pipe % stages); |
|
if (k == b_sh_wr_iters - 2) { |
|
fetch_to_shared((pipe + stages - 1) % stages, pipe, |
|
slice_iters >= stages); |
|
pipe++; |
|
wait_for_stage(); |
|
} |
|
matmul(k); |
|
} |
|
slice_iters--; |
|
if (slice_iters == 0) break; |
|
} |
|
a_gl_rd += a_gl_rd_delta_o * stages; |
|
|
|
|
|
|
|
|
|
if (slice_iters == 0) { |
|
cp_async_wait<0>(); |
|
bool last = slice_idx == slice_count - 1; |
|
|
|
|
|
if (last) { |
|
if (s_tok_sh_wr_pred) { |
|
cp_async1(&sh_s_tok[s_tok_sh_wr], &s_tok[s_tok_gl_rd]); |
|
} |
|
if (s_ch_sh_wr_pred) { |
|
cp_async4(&sh_s_ch[s_ch_sh_wr], &s_ch[s_ch_gl_rd]); |
|
} |
|
cp_async_fence(); |
|
} |
|
thread_block_reduce(); |
|
if (last) { |
|
cp_async_wait<0>(); |
|
__syncthreads(); |
|
if (threadIdx.x / 32 < thread_n_blocks / 4) { |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) { |
|
frag_s_tok[i][0] = |
|
*reinterpret_cast<float*>(&sh_s_tok[16 * i + 2 * s_tok_sh_rd]); |
|
frag_s_tok[i][1] = *reinterpret_cast<float*>( |
|
&sh_s_tok[16 * i + 2 * s_tok_sh_rd + 1]); |
|
} |
|
reinterpret_cast<int4*>(&frag_s_ch)[0] = sh_s_ch[s_ch_sh_rd + 0]; |
|
reinterpret_cast<int4*>(&frag_s_ch)[1] = sh_s_ch[s_ch_sh_rd + 1]; |
|
reinterpret_cast<int4*>(&frag_s_ch)[2] = sh_s_ch[s_ch_sh_rd + 8]; |
|
reinterpret_cast<int4*>(&frag_s_ch)[3] = sh_s_ch[s_ch_sh_rd + 9]; |
|
} |
|
} |
|
if (slice_count > 1) { |
|
|
|
barrier_acquire(&locks[slice_col], slice_idx); |
|
global_reduce(slice_idx == 0, last); |
|
barrier_release(&locks[slice_col], last); |
|
} |
|
if (last) |
|
write_result(); |
|
slice_row = 0; |
|
slice_col_par++; |
|
slice_col++; |
|
init_slice(); |
|
if (slice_iters) { |
|
a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + |
|
(threadIdx.x % a_gl_rd_delta_o); |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) |
|
B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; |
|
if (slice_col == 0) { |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; |
|
} |
|
s_group_gl_rd = s_group_sh_stride * slice_col + threadIdx.x; |
|
s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x; |
|
start_pipes(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#else |
|
|
|
template <const int threads, |
|
const int thread_m_blocks, |
|
|
|
|
|
const int thread_n_blocks, |
|
const int thread_k_blocks, |
|
const int stages, |
|
|
|
const int group_blocks = -1 |
|
|
|
> |
|
__global__ void Marlin( |
|
const int4* __restrict__ A, |
|
const int4* __restrict__ B, |
|
int4* __restrict__ C, |
|
|
|
|
|
int4* __restrict__ D, |
|
const float* __restrict__ s_tok, |
|
|
|
const int4* __restrict__ s_ch, |
|
|
|
const int4* __restrict__ s_group, |
|
|
|
|
|
int prob_m, |
|
int prob_n, |
|
int prob_k, |
|
int* locks |
|
) { |
|
|
|
assert(false); |
|
return; |
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
const int USER_THREADS = |
|
256; |
|
const int STAGES = 4; |
|
|
|
static constexpr int min_thread_n = 64; |
|
static constexpr int min_thread_k = 64; |
|
|
|
static constexpr int tile_size = 16; |
|
static constexpr int max_par = 16; |
|
|
|
static constexpr int pack_factor_4bit = |
|
8; |
|
|
|
#define __CALL_IF(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \ |
|
GROUP_BLOCKS, NUM_THREADS) \ |
|
else if (thread_m_blocks == THREAD_M_BLOCKS && \ |
|
thread_n_blocks == THREAD_N_BLOCKS && \ |
|
thread_k_blocks == THREAD_K_BLOCKS && \ |
|
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \ |
|
cudaFuncSetAttribute(Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \ |
|
THREAD_K_BLOCKS, STAGES, GROUP_BLOCKS>, \ |
|
cudaFuncAttributeMaxDynamicSharedMemorySize, \ |
|
max_shared_mem); \ |
|
Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \ |
|
STAGES, GROUP_BLOCKS> \ |
|
<<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \ |
|
A_ptr, B_ptr, C_ptr, D_ptr, s_tok_ptr, s_ch_ptr, s_group_ptr, \ |
|
prob_m, prob_n, prob_k, locks); \ |
|
} |
|
|
|
typedef struct { |
|
int thread_k; |
|
int thread_n; |
|
int num_threads; |
|
} thread_config_t; |
|
|
|
thread_config_t small_batch_thread_configs[] = { |
|
|
|
|
|
|
|
{128, 128, 256}, |
|
{128, 64, 128}, |
|
{64, 256, 256}, |
|
{64, 128, 128}, |
|
}; |
|
|
|
thread_config_t large_batch_thread_configs[] = { |
|
|
|
|
|
|
|
{64, 256, 256}, |
|
{128, 128, 256}, |
|
{64, 128, 128}, |
|
{128, 64, 128}, |
|
}; |
|
|
|
bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n, |
|
int prob_k) { |
|
|
|
if (th_config.thread_k == -1 || th_config.thread_n == -1 || |
|
th_config.num_threads == -1) { |
|
return false; |
|
} |
|
|
|
|
|
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) { |
|
return false; |
|
} |
|
|
|
|
|
|
|
if (th_config.thread_k != 128 && th_config.thread_k != 64) { |
|
return false; |
|
} |
|
|
|
|
|
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) { |
|
return false; |
|
} |
|
|
|
|
|
if (th_config.num_threads < 128) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) { |
|
if (prob_m <= 16) { |
|
for (auto th_config : small_batch_thread_configs) { |
|
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { |
|
return th_config; |
|
} |
|
} |
|
|
|
} else { |
|
for (auto th_config : large_batch_thread_configs) { |
|
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { |
|
return th_config; |
|
} |
|
} |
|
} |
|
|
|
return thread_config_t{-1, -1, -1}; |
|
} |
|
|
|
#define CALL_IF(N_BLOCKS, K_BLOCKS, NUM_THREADS) \ |
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ |
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ |
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ |
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ |
|
__CALL_IF(2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ |
|
__CALL_IF(2, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ |
|
__CALL_IF(3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ |
|
__CALL_IF(3, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ |
|
__CALL_IF(4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ |
|
__CALL_IF(4, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) |
|
|
|
void marlin_qqq_cuda(const void* A, const void* B, void* C, void* D, |
|
void* s_tok, void* s_ch, void* s_group, int prob_m, |
|
int prob_n, int prob_k, void* workspace, |
|
int groupsize = -1, int dev = 0, cudaStream_t stream = 0, |
|
int thread_k = -1, int thread_n = -1, int sms = -1, |
|
int max_par = 16) { |
|
int tot_m = prob_m; |
|
int tot_m_blocks = ceildiv(tot_m, 16); |
|
int pad = 16 * tot_m_blocks - tot_m; |
|
|
|
if (sms == -1) |
|
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev); |
|
|
|
int max_shared_mem = 0; |
|
cudaDeviceGetAttribute(&max_shared_mem, |
|
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); |
|
TORCH_CHECK(max_shared_mem > 0); |
|
|
|
|
|
thread_config_t th_config; |
|
if (thread_k != -1 && thread_n != -1) { |
|
|
|
th_config = thread_config_t{thread_k, thread_n, USER_THREADS}; |
|
} else { |
|
|
|
th_config = determine_thread_config(prob_m, prob_n, prob_k); |
|
} |
|
|
|
if (!is_valid_config(th_config, prob_m, prob_n, prob_k)) { |
|
throw std::runtime_error( |
|
"Invalid thread config: thread_k = " + str(th_config.thread_k) + |
|
", thread_n = " + str(th_config.thread_n) + |
|
", num_threads = " + str(th_config.num_threads) + " for MKN = [" + |
|
str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]"); |
|
} |
|
|
|
int num_threads = th_config.num_threads; |
|
thread_k = th_config.thread_k; |
|
thread_n = th_config.thread_n; |
|
|
|
int thread_k_blocks = thread_k / 16; |
|
int thread_n_blocks = thread_n / 16; |
|
int group_blocks = (groupsize == -1) ? -1 : groupsize / 16; |
|
int blocks = sms; |
|
|
|
if (prob_m == 0 || prob_n == 0 || prob_k == 0) { |
|
return; |
|
} |
|
|
|
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n, |
|
" is not divisible by thread_n = ", thread_n); |
|
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k, |
|
" is not divisible by thread_k = ", thread_k); |
|
if (group_blocks != -1) { |
|
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k, |
|
" is not divisible by group_blocks = ", group_blocks); |
|
} |
|
|
|
const int4* A_ptr = (const int4*)A; |
|
const int4* B_ptr = (const int4*)B; |
|
int4* C_ptr = (int4*)C; |
|
int4* D_ptr = (int4*)D; |
|
const float* s_tok_ptr = (const float*)s_tok; |
|
const int4* s_ch_ptr = (const int4*)s_ch; |
|
const int4* s_group_ptr = (const int4*)s_group; |
|
|
|
int* locks = (int*)workspace; |
|
|
|
for (int i = 0; i < tot_m_blocks; i += 4) { |
|
int thread_m_blocks = tot_m_blocks - i; |
|
prob_m = tot_m - 16 * i; |
|
int par = 1; |
|
if (thread_m_blocks > 4) { |
|
|
|
|
|
par = (16 * thread_m_blocks - pad) / 64; |
|
if (par > max_par) par = max_par; |
|
prob_m = 64 * par; |
|
i += 4 * (par - 1); |
|
thread_m_blocks = 4; |
|
} |
|
|
|
|
|
|
|
|
|
if (false) { |
|
} |
|
CALL_IF(8, 8, 256) |
|
CALL_IF(16, 4, 256) |
|
CALL_IF(8, 4, 128) |
|
CALL_IF(4, 8, 128) |
|
else { |
|
throw std::runtime_error("Unsupported shapes: MKN = [" + str(prob_m) + |
|
", " + str(prob_k) + ", " + str(prob_n) + "]" + |
|
", groupsize = " + str(groupsize) + |
|
", thread_m_blocks = " + str(thread_m_blocks) + |
|
", thread_n_blocks = " + str(thread_n_blocks) + |
|
", thread_k_blocks = " + str(thread_k_blocks)); |
|
} |
|
|
|
A_ptr += 16 * thread_m_blocks * (prob_k / 16) * par; |
|
D_ptr += 16 * thread_m_blocks * (prob_n / 8) * par; |
|
s_tok_ptr += 16 * thread_m_blocks * par; |
|
} |
|
} |
|
} |
|
|
|
torch::Tensor marlin_qqq_gemm(torch::Tensor const& a, |
|
torch::Tensor const& b_q_weight, |
|
torch::Tensor const& s_tok, |
|
torch::Tensor const& s_ch, |
|
torch::Tensor const& s_group, |
|
torch::Tensor& workspace, int64_t size_m, |
|
int64_t size_n, int64_t size_k) { |
|
|
|
TORCH_CHECK(size_m == a.size(0), |
|
"Shape mismatch: a.size(0) = " + str(a.size(0)) + |
|
", size_m = " + str(size_m)); |
|
TORCH_CHECK(size_m == s_tok.numel(), |
|
"Shape mismatch: s_tok.numel() = " + str(s_tok.numel()) + |
|
", size_m = " + str(size_m)); |
|
|
|
|
|
TORCH_CHECK(size_k == a.size(1), |
|
"Shape mismatch: a.size(1) = " + str(a.size(1)) + |
|
", size_k = " + str(size_k)); |
|
TORCH_CHECK(size_k % tile_size == 0, |
|
"size_k = " + str(size_k) + |
|
" is not divisible by tile_size = " + str(tile_size)); |
|
TORCH_CHECK( |
|
(size_k / tile_size) == b_q_weight.size(0), |
|
"Shape mismatch: b_q_weight.size(0) = " + str(b_q_weight.size(0)) + |
|
", size_k = " + str(size_k) + ", tile_size = " + str(tile_size)); |
|
|
|
int groupsize = (s_group.numel() == 0) ? -1 : size_k / s_group.size(0); |
|
|
|
TORCH_CHECK(groupsize == -1 || groupsize == 128, |
|
"Unexpected groupsize = " + str(groupsize)); |
|
|
|
|
|
TORCH_CHECK(s_ch.numel() == size_n, |
|
"Shape mismatch: s_ch.numel() = " + str(s_ch.numel()) + |
|
", size_n = " + str(size_n)); |
|
TORCH_CHECK(b_q_weight.size(1) % tile_size == 0, |
|
"b_q_weight.size(1) = " + str(b_q_weight.size(1)) + |
|
" is not divisible by tile_size = " + str(tile_size)); |
|
if (groupsize != -1) { |
|
TORCH_CHECK(s_group.size(1) == size_n, |
|
"Shape mismatch: s_group.size(1) = " + str(s_group.size(1)) + |
|
", size_n = " + str(size_n)); |
|
TORCH_CHECK( |
|
size_k % s_group.size(0) == 0, |
|
"size_k = " + str(size_k) + |
|
", is not divisible by s_group.size(0) = " + str(s_group.size(0))); |
|
} |
|
|
|
int actual_size_n = (b_q_weight.size(1) / tile_size) * pack_factor_4bit; |
|
TORCH_CHECK(size_n == actual_size_n, |
|
"Shape mismatch: size_n = " + str(size_n) + |
|
", actual_size_n = " + str(actual_size_n)); |
|
|
|
|
|
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU"); |
|
TORCH_CHECK(a.is_contiguous(), "A is not contiguous"); |
|
|
|
|
|
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); |
|
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); |
|
|
|
|
|
TORCH_CHECK(s_tok.device().is_cuda(), "s_tok is not on GPU"); |
|
TORCH_CHECK(s_tok.is_contiguous(), "s_tok is not contiguous"); |
|
TORCH_CHECK(s_tok.dtype() == torch::kFloat32, "s_tok's dtype is not float32"); |
|
|
|
|
|
TORCH_CHECK(s_ch.device().is_cuda(), "s_ch is not on GPU"); |
|
TORCH_CHECK(s_ch.is_contiguous(), "s_ch is not contiguous"); |
|
TORCH_CHECK(s_ch.dtype() == torch::kFloat32, "s_ch's dtype is not float32"); |
|
|
|
|
|
TORCH_CHECK(s_group.device().is_cuda(), "s_group is not on GPU"); |
|
TORCH_CHECK(s_group.is_contiguous(), "s_group is not contiguous"); |
|
TORCH_CHECK(s_group.dtype() == torch::kFloat16, |
|
"s_group's dtype is not float16"); |
|
|
|
|
|
TORCH_CHECK(size_n % min_thread_n == 0, |
|
"size_n = " + str(size_n) + |
|
", is not divisible by min_thread_n = " + str(min_thread_n)); |
|
int min_workspace_size = (size_n / min_thread_n) * max_par; |
|
TORCH_CHECK(workspace.numel() >= min_workspace_size, |
|
"workspace.numel = " + str(workspace.numel()) + |
|
" is below min_workspace_size = " + str(min_workspace_size)); |
|
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(a)); |
|
auto options_c = torch::TensorOptions().dtype(torch::kInt).device(a.device()); |
|
torch::Tensor c = torch::empty({max_par * 64, size_n}, options_c); |
|
|
|
|
|
auto options_d = |
|
torch::TensorOptions().dtype(torch::kFloat16).device(a.device()); |
|
torch::Tensor d = torch::empty({size_m, size_n}, options_d); |
|
|
|
|
|
|
|
int thread_k = -1; |
|
|
|
|
|
int thread_n = -1; |
|
|
|
int sms = -1; |
|
|
|
int dev = a.get_device(); |
|
marlin_qqq_cuda( |
|
a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(), d.data_ptr(), |
|
s_tok.data_ptr(), s_ch.data_ptr(), s_group.data_ptr(), size_m, size_n, |
|
size_k, workspace.data_ptr(), groupsize, dev, |
|
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, max_par); |
|
|
|
return d; |
|
} |
|
|