quantization / fp8 /amd /quant_utils.cuh
danieldk's picture
danieldk HF staff
Add `scaled_(int|fp8)_quant` and `fp8_marlin_gemm`
5c6fb68
raw
history blame
16.5 kB
#pragma once
#include "hip_float8.h"
#include <hip/hip_fp16.h>
#include <hip/hip_bf16.h>
#include <hip/hip_bfloat16.h>
#include "../../../attention/dtype_fp8.cuh"
#include "../../../attention/dtype_float32.cuh"
#include "../../../attention/dtype_bfloat16.cuh"
namespace vllm {
#ifdef USE_ROCM
namespace fp8 {
#ifdef ENABLE_FP8
template <typename Tout, typename Tin>
__inline__ __device__ Tout vec_conversion(const Tin& x) {
return x;
}
template <typename Tout, typename Tin>
__inline__ __device__ Tout scaled_vec_conversion(const Tin& x,
const float scale) {
return x;
}
// fp8 -> half
template <>
__inline__ __device__ uint16_t
vec_conversion<uint16_t, uint8_t>(const uint8_t& a) {
hip_fp8 f8{a, hip_fp8::from_bits()};
__half_raw res;
res.data = static_cast<float>(f8);
return res.x;
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t
vec_conversion<uint32_t, uint16_t>(const uint16_t& a) {
#if defined(__HIP__MI300__) && \
defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
union {
__half2_raw h2r;
uint32_t ui32;
} tmp;
tmp.h2r.x.data = f2[0];
tmp.h2r.y.data = f2[1];
return tmp.ui32;
#else
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
tmp.u16[0] = vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a));
tmp.u16[1] = vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a >> 8U));
return tmp.u32;
#endif
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2 vec_conversion<uint2, uint32_t>(const uint32_t& a) {
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = vec_conversion<uint32_t, uint16_t>((uint16_t)a);
tmp.u32[1] = vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U));
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4 vec_conversion<uint4, uint2>(const uint2& a) {
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = vec_conversion<uint2, uint32_t>(a.x);
tmp.u64[1] = vec_conversion<uint2, uint32_t>(a.y);
return tmp.u64x2;
}
using __nv_bfloat16 = __hip_bfloat16;
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16
vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a) {
hip_fp8 f8{a, hip_fp8::from_bits()};
float f{f8};
return __float2bfloat16(f);
}
using __nv_bfloat162 = __hip_bfloat162;
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162
vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a) {
__nv_bfloat162 res;
res.x = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a);
res.y = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U));
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t
vec_conversion<bf16_4_t, uint32_t>(const uint32_t& a) {
bf16_4_t res;
res.x = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a);
res.y = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, uint2>(const uint2& a) {
bf16_4_t tmp1, tmp2;
tmp1 = vec_conversion<bf16_4_t, uint32_t>(a.x);
tmp2 = vec_conversion<bf16_4_t, uint32_t>(a.y);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float vec_conversion<float, uint8_t>(const uint8_t& a) {
hip_fp8 fp8{a, hip_fp8::from_bits()};
return static_cast<float>(fp8);
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2
vec_conversion<float2, uint16_t>(const uint16_t& a) {
#if defined(__HIP__MI300__) && \
defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
float2 res;
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
res.x = f2[0];
res.y = f2[1];
return res;
#else
float2 res;
res.x = vec_conversion<float, uint8_t>(static_cast<uint8_t>(a));
res.y = vec_conversion<float, uint8_t>(static_cast<uint8_t>(a >> 8U));
return res;
#endif
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_
vec_conversion<Float4_, uint32_t>(const uint32_t& a) {
Float4_ res;
res.x = vec_conversion<float2, uint16_t>((uint16_t)a);
res.y = vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_ vec_conversion<Float8_, uint2>(const uint2& a) {
Float4_ tmp1, tmp2;
tmp1 = vec_conversion<Float4_, uint32_t>(a.x);
tmp2 = vec_conversion<Float4_, uint32_t>(a.y);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// half -> fp8
template <>
__inline__ __device__ uint8_t
vec_conversion<uint8_t, uint16_t>(const uint16_t& a) {
__half_raw tmp;
tmp.x = a;
hip_fp8 f8{static_cast<float>(tmp.data)};
return f8.data;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t
vec_conversion<uint8_t, __nv_bfloat16>(const __nv_bfloat16& a) {
hip_fp8 res{__bfloat162float(a)};
return res.data;
}
// float -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, float>(const float& a) {
hip_fp8 f8(a);
return f8.data;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4
vec_conversion<float4, uint32_t>(const uint32_t& a) {
Float4_ tmp = vec_conversion<Float4_, uint32_t>(a);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
// float2 -> half2
template <>
__inline__ __device__ uint32_t
vec_conversion<uint32_t, float2>(const float2& a) {
union {
half2 float16;
uint32_t uint32;
};
float16 = __float22half2_rn(a);
return uint32;
}
// Float4 -> half2x2
template <>
__inline__ __device__ uint2 vec_conversion<uint2, Float4_>(const Float4_& a) {
uint2 b;
float2 val;
val.x = a.x.x;
val.y = a.x.y;
b.x = vec_conversion<uint32_t, float2>(val);
val.x = a.y.x;
val.y = a.y.y;
b.y = vec_conversion<uint32_t, float2>(val);
return b;
}
// Float4 -> float4
template <>
__inline__ __device__ float4 vec_conversion<float4, Float4_>(const Float4_& a) {
float4 b;
b.x = a.x.x;
b.y = a.x.y;
b.z = a.y.x;
b.w = a.y.y;
return b;
}
// Float8 -> half2x4
template <>
__inline__ __device__ uint4 vec_conversion<uint4, Float8_>(const Float8_& a) {
uint4 b;
b.x = vec_conversion<uint32_t, float2>(a.x);
b.y = vec_conversion<uint32_t, float2>(a.y);
b.z = vec_conversion<uint32_t, float2>(a.z);
b.w = vec_conversion<uint32_t, float2>(a.w);
return b;
}
// float2 -> bfloat162
template <>
__inline__ __device__ __nv_bfloat162
vec_conversion<__nv_bfloat162, float2>(const float2& a) {
__nv_bfloat162 b = __float22bfloat162_rn(a);
return b;
}
// Float4 -> bfloat162x2
template <>
__inline__ __device__ bf16_4_t
vec_conversion<bf16_4_t, Float4_>(const Float4_& a) {
bf16_4_t b;
b.x = __float22bfloat162_rn(a.x);
b.y = __float22bfloat162_rn(a.y);
return b;
}
// Float8 -> bfloat162x4
template <>
__inline__ __device__ bf16_8_t
vec_conversion<bf16_8_t, Float8_>(const Float8_& a) {
bf16_8_t b;
b.x = __float22bfloat162_rn(a.x);
b.y = __float22bfloat162_rn(a.y);
b.z = __float22bfloat162_rn(a.z);
b.w = __float22bfloat162_rn(a.w);
return b;
}
/* Scaled and vectorized conversions, for data exchange between high and low
precision domains
Convention of the scale in API, e.g: FP8_data = Quantization(
High_Precision_data / scale ) s.t. Quantize(HP / scale) => FP8 Dequant(FP8) *
scale => HP
*/
// fp8 -> half
template <>
__inline__ __device__ uint16_t
scaled_vec_conversion<uint16_t, uint8_t>(const uint8_t& a, const float scale) {
hip_fp8 f8{a, hip_fp8::from_bits()};
__half_raw res;
res.data = static_cast<float>(f8) * scale;
return res.x;
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t scaled_vec_conversion<uint32_t, uint16_t>(
const uint16_t& a, const float scale) {
#if defined(__HIP__MI300__) && \
defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
union {
__half2_raw h2r;
uint32_t ui32;
} tmp;
tmp.h2r.x.data = f2[0] * scale;
tmp.h2r.y.data = f2[1] * scale;
return tmp.ui32;
#else
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
tmp.u16[0] =
scaled_vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a), scale);
tmp.u16[1] = scaled_vec_conversion<uint16_t, uint8_t>(
static_cast<uint8_t>(a >> 8U), scale);
return tmp.u32;
#endif
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2
scaled_vec_conversion<uint2, uint32_t>(const uint32_t& a, const float scale) {
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)a, scale);
tmp.u32[1] =
scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U), scale);
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4
scaled_vec_conversion<uint4, uint2>(const uint2& a, const float scale) {
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = scaled_vec_conversion<uint2, uint32_t>(a.x, scale);
tmp.u64[1] = scaled_vec_conversion<uint2, uint32_t>(a.y, scale);
return tmp.u64x2;
}
using __nv_bfloat16 = __hip_bfloat16;
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16
scaled_vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a,
const float scale) {
hip_fp8 f8{a, hip_fp8::from_bits()};
float f{f8};
return __float2bfloat16(f * scale);
}
using __nv_bfloat162 = __hip_bfloat162;
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162
scaled_vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a,
const float scale) {
__nv_bfloat162 res;
res.x = scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a, scale);
res.y =
scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U), scale);
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t scaled_vec_conversion<bf16_4_t, uint32_t>(
const uint32_t& a, const float scale) {
bf16_4_t res;
res.x = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a, scale);
res.y = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U),
scale);
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t
scaled_vec_conversion<bf16_8_t, uint2>(const uint2& a, const float scale) {
bf16_4_t tmp1, tmp2;
tmp1 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.x, scale);
tmp2 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.y, scale);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float scaled_vec_conversion<float, uint8_t>(
const uint8_t& a, const float scale) {
hip_fp8 fp8{a, hip_fp8::from_bits()};
return static_cast<float>(fp8) * scale;
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2
scaled_vec_conversion<float2, uint16_t>(const uint16_t& a, const float scale) {
#if defined(__HIP__MI300__) && \
defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
float2 res;
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
res.x = f2[0] * scale;
res.y = f2[1] * scale;
return res;
#else
float2 res;
res.x = scaled_vec_conversion<float, uint8_t>(static_cast<uint8_t>(a), scale);
res.y = scaled_vec_conversion<float, uint8_t>(static_cast<uint8_t>(a >> 8U),
scale);
return res;
#endif
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_
scaled_vec_conversion<Float4_, uint32_t>(const uint32_t& a, const float scale) {
Float4_ res;
res.x = scaled_vec_conversion<float2, uint16_t>((uint16_t)a, scale);
res.y = scaled_vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U), scale);
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_
scaled_vec_conversion<Float8_, uint2>(const uint2& a, const float scale) {
Float4_ tmp1, tmp2;
tmp1 = scaled_vec_conversion<Float4_, uint32_t>(a.x, scale);
tmp2 = scaled_vec_conversion<Float4_, uint32_t>(a.y, scale);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
/* Quantize(HP / scale) => FP8 */
// TODO(Hai): vectorized to add
// half -> fp8
template <>
__inline__ __device__ uint8_t
scaled_vec_conversion<uint8_t, uint16_t>(const uint16_t& a, const float scale) {
__half_raw tmp;
tmp.x = a;
hip_fp8 f8{static_cast<float>(tmp.data) / scale};
return f8.data;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, __nv_bfloat16>(
const __nv_bfloat16& a, const float scale) {
hip_fp8 res{__bfloat162float(a) / scale};
return res.data;
}
// float -> fp8
template <>
__inline__ __device__ uint8_t
scaled_vec_conversion<uint8_t, float>(const float& a, const float scale) {
hip_fp8 f8(a / scale);
return f8.data;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4
scaled_vec_conversion<float4, uint32_t>(const uint32_t& a, const float scale) {
Float4_ tmp = scaled_vec_conversion<Float4_, uint32_t>(a, scale);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
#endif // ENABLE_FP8
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
__inline__ __device__ Tout convert(const Tin& x) {
#ifdef ENABLE_FP8
if constexpr (kv_dt == Fp8KVCacheDataType::kFp8E4M3) {
return vec_conversion<Tout, Tin>(x);
}
#endif
assert(false);
return {}; // Squash missing return statement warning
}
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
__inline__ __device__ Tout scaled_convert(const Tin& x, const float scale) {
#ifdef ENABLE_FP8
if constexpr (kv_dt == Fp8KVCacheDataType::kFp8E4M3) {
return scaled_vec_conversion<Tout, Tin>(x, scale);
}
#endif
assert(false);
return {}; // Squash missing return statement warning
}
// The following macro is used to dispatch the conversion function based on
// the data type of the key and value cache. The FN is a macro that calls a
// function with template<typename scalar_t, typename cache_t,
// Fp8KVCacheDataType kv_dt>.
#define DISPATCH_BY_KV_CACHE_DTYPE(SRC_DTYPE, KV_DTYPE, FN) \
if (KV_DTYPE == "auto") { \
if (SRC_DTYPE == at::ScalarType::Float) { \
FN(float, float, vllm::Fp8KVCacheDataType::kAuto); \
} else if (SRC_DTYPE == at::ScalarType::Half) { \
FN(uint16_t, uint16_t, vllm::Fp8KVCacheDataType::kAuto); \
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
FN(__nv_bfloat16, __nv_bfloat16, vllm::Fp8KVCacheDataType::kAuto); \
} else { \
TORCH_CHECK(false, "Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else { \
if (KV_DTYPE == "fp8" || KV_DTYPE == "fp8_e4m3") { \
if (SRC_DTYPE == at::ScalarType::Float) { \
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::Half) { \
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else { \
TORCH_CHECK(false, \
"Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else { \
TORCH_CHECK(false, "Unsupported data type of kv cache: ", KV_DTYPE); \
} \
}
} // namespace fp8
#endif // USE_ROCM
} // namespace vllm