|
#include "marlin.cuh" |
|
|
|
namespace marlin { |
|
|
|
template <int const num_threads, int const num_bits> |
|
__global__ void awq_marlin_repack_kernel( |
|
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, |
|
int size_k, int size_n) { |
|
constexpr int pack_factor = 32 / num_bits; |
|
|
|
int k_tiles = size_k / tile_k_size; |
|
int n_tiles = size_n / tile_n_size; |
|
int block_k_tiles = div_ceil(k_tiles, gridDim.x); |
|
|
|
int start_k_tile = blockIdx.x * block_k_tiles; |
|
if (start_k_tile >= k_tiles) { |
|
return; |
|
} |
|
|
|
int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles); |
|
|
|
|
|
auto wait_for_stage = [&]() { |
|
|
|
|
|
|
|
|
|
cp_async_wait<repack_stages - 2>(); |
|
__syncthreads(); |
|
}; |
|
|
|
extern __shared__ int4 sh[]; |
|
|
|
constexpr int tile_n_ints = tile_n_size / pack_factor; |
|
|
|
constexpr int stage_n_threads = tile_n_ints / 4; |
|
constexpr int stage_k_threads = tile_k_size; |
|
constexpr int stage_size = stage_k_threads * stage_n_threads; |
|
|
|
auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) { |
|
if (n_tile_id >= n_tiles) { |
|
cp_async_fence(); |
|
return; |
|
} |
|
|
|
int first_n = n_tile_id * tile_n_size; |
|
int first_n_packed = first_n / pack_factor; |
|
|
|
int4* sh_ptr = sh + stage_size * pipe; |
|
|
|
if (threadIdx.x < stage_size) { |
|
int k_id = threadIdx.x / stage_n_threads; |
|
int n_id = threadIdx.x % stage_n_threads; |
|
|
|
int first_k = k_tile_id * tile_k_size; |
|
|
|
cp_async4(&sh_ptr[k_id * stage_n_threads + n_id], |
|
reinterpret_cast<int4 const*>( |
|
&(b_q_weight_ptr[(first_k + k_id) * (size_n / pack_factor) + |
|
first_n_packed + (n_id * 4)]))); |
|
} |
|
|
|
cp_async_fence(); |
|
}; |
|
|
|
auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) { |
|
if (n_tile_id >= n_tiles) { |
|
return; |
|
} |
|
|
|
int warp_id = threadIdx.x / 32; |
|
int th_id = threadIdx.x % 32; |
|
|
|
if (warp_id >= 4) { |
|
return; |
|
} |
|
|
|
int tc_col = th_id / 4; |
|
int tc_row = (th_id % 4) * 2; |
|
|
|
constexpr int tc_offsets[4] = {0, 1, 8, 9}; |
|
|
|
int cur_n = warp_id * 16 + tc_col; |
|
int cur_n_packed = cur_n / pack_factor; |
|
int cur_n_pos = cur_n % pack_factor; |
|
|
|
constexpr int sh_stride = tile_n_ints; |
|
constexpr uint32_t mask = (1 << num_bits) - 1; |
|
|
|
int4* sh_stage_ptr = sh + stage_size * pipe; |
|
uint32_t* sh_stage_int_ptr = reinterpret_cast<uint32_t*>(sh_stage_ptr); |
|
|
|
|
|
int cur_n_pos_unpacked; |
|
if constexpr (num_bits == 4) { |
|
constexpr int undo_pack[8] = {0, 4, 1, 5, 2, 6, 3, 7}; |
|
cur_n_pos_unpacked = undo_pack[cur_n_pos]; |
|
} else { |
|
constexpr int undo_pack[4] = {0, 2, 1, 3}; |
|
cur_n_pos_unpacked = undo_pack[cur_n_pos]; |
|
} |
|
|
|
uint32_t vals[8]; |
|
#pragma unroll |
|
for (int i = 0; i < 4; i++) { |
|
int cur_elem = tc_row + tc_offsets[i]; |
|
|
|
int packed_src_0 = sh_stage_int_ptr[cur_n_packed + sh_stride * cur_elem]; |
|
int packed_src_1 = sh_stage_int_ptr[cur_n_packed + (8 / pack_factor) + |
|
sh_stride * cur_elem]; |
|
|
|
vals[i] = (packed_src_0 >> (cur_n_pos_unpacked * num_bits)) & mask; |
|
vals[4 + i] = (packed_src_1 >> (cur_n_pos_unpacked * num_bits)) & mask; |
|
} |
|
|
|
constexpr int tile_size = tile_k_size * tile_n_size / pack_factor; |
|
int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size; |
|
|
|
|
|
|
|
if constexpr (num_bits == 4) { |
|
constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7}; |
|
|
|
uint32_t res = 0; |
|
#pragma unroll |
|
for (int i = 0; i < 8; i++) { |
|
res |= vals[pack_idx[i]] << (i * 4); |
|
} |
|
|
|
out_ptr[out_offset + th_id * 4 + warp_id] = res; |
|
|
|
} else { |
|
constexpr int pack_idx[4] = {0, 2, 1, 3}; |
|
|
|
uint32_t res1 = 0; |
|
uint32_t res2 = 0; |
|
#pragma unroll |
|
for (int i = 0; i < 4; i++) { |
|
res1 |= vals[pack_idx[i]] << (i * 8); |
|
res2 |= vals[4 + pack_idx[i]] << (i * 8); |
|
} |
|
|
|
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1; |
|
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2; |
|
} |
|
}; |
|
|
|
auto start_pipes = [&](int k_tile_id, int n_tile_id) { |
|
#pragma unroll |
|
for (int pipe = 0; pipe < repack_stages - 1; pipe++) { |
|
fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe); |
|
} |
|
|
|
wait_for_stage(); |
|
}; |
|
#pragma unroll |
|
for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) { |
|
int n_tile_id = 0; |
|
|
|
start_pipes(k_tile_id, n_tile_id); |
|
|
|
while (n_tile_id < n_tiles) { |
|
#pragma unroll |
|
for (int pipe = 0; pipe < repack_stages; pipe++) { |
|
fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id, |
|
n_tile_id + pipe + repack_stages - 1); |
|
repack_tile(pipe, k_tile_id, n_tile_id + pipe); |
|
wait_for_stage(); |
|
} |
|
n_tile_id += repack_stages; |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
#define CALL_IF(NUM_BITS) \ |
|
else if (num_bits == NUM_BITS) { \ |
|
cudaFuncSetAttribute( \ |
|
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS>, \ |
|
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ |
|
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS> \ |
|
<<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \ |
|
b_q_weight_ptr, out_ptr, size_k, size_n); \ |
|
} |
|
|
|
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, |
|
int64_t size_n, int64_t num_bits) { |
|
|
|
TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k, |
|
" is not divisible by tile_k_size = ", marlin::tile_k_size); |
|
TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n, |
|
" is not divisible by tile_n_size = ", marlin::tile_n_size); |
|
|
|
TORCH_CHECK(num_bits == 4 || num_bits == 8, |
|
"num_bits must be 4 or 8. Got = ", num_bits); |
|
int const pack_factor = 32 / num_bits; |
|
|
|
|
|
TORCH_CHECK(b_q_weight.size(0) == size_k, |
|
"b_q_weight.size(0) = ", b_q_weight.size(0), |
|
" is not size_k = ", size_k); |
|
TORCH_CHECK((size_n / pack_factor) == b_q_weight.size(1), |
|
"Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1), |
|
", size_n = ", size_n, ", pack_factor = ", pack_factor); |
|
|
|
|
|
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); |
|
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); |
|
TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt"); |
|
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight)); |
|
auto options = torch::TensorOptions() |
|
.dtype(b_q_weight.dtype()) |
|
.device(b_q_weight.device()); |
|
torch::Tensor out = torch::empty( |
|
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, |
|
options); |
|
|
|
|
|
uint32_t const* b_q_weight_ptr = |
|
reinterpret_cast<uint32_t const*>(b_q_weight.data_ptr()); |
|
uint32_t* out_ptr = reinterpret_cast<uint32_t*>(out.data_ptr()); |
|
|
|
|
|
int dev = b_q_weight.get_device(); |
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev); |
|
int blocks; |
|
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev); |
|
|
|
int max_shared_mem = 0; |
|
cudaDeviceGetAttribute(&max_shared_mem, |
|
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); |
|
TORCH_CHECK(max_shared_mem > 0); |
|
|
|
if (false) { |
|
} |
|
CALL_IF(4) |
|
CALL_IF(8) |
|
else { |
|
TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits); |
|
} |
|
|
|
return out; |
|
} |
|
|
|
torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, |
|
c10::SymInt size_k, c10::SymInt size_n, |
|
int64_t num_bits) { |
|
int const pack_factor = 32 / num_bits; |
|
auto options = torch::TensorOptions() |
|
.dtype(b_q_weight.dtype()) |
|
.device(b_q_weight.device()); |
|
return torch::empty_symint( |
|
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, |
|
options); |
|
} |
|
|