|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef MARLIN_NAMESPACE_NAME |
|
#define MARLIN_NAMESPACE_NAME marlin |
|
#endif |
|
|
|
#include "marlin.cuh" |
|
#include "marlin_dtypes.cuh" |
|
#include "dequant.h" |
|
#include "core/scalar_type.hpp" |
|
|
|
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \ |
|
static_assert(std::is_same<scalar_t, half>::value || \ |
|
std::is_same<scalar_t, nv_bfloat16>::value, \ |
|
"only float16 and bfloat16 is supported"); |
|
|
|
namespace MARLIN_NAMESPACE_NAME { |
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 |
|
|
|
template <typename scalar_t, |
|
const vllm::ScalarTypeId w_type_id, |
|
const int threads, |
|
const int thread_m_blocks, |
|
|
|
|
|
const int thread_n_blocks, |
|
const int thread_k_blocks, |
|
const bool m_block_size_8, |
|
|
|
const int stages, |
|
|
|
const bool has_act_order, |
|
const int group_blocks, |
|
|
|
const bool is_zp_float |
|
> |
|
__global__ void Marlin( |
|
const int4* __restrict__ A, |
|
const int4* __restrict__ B, |
|
int4* __restrict__ C, |
|
int4* __restrict__ C_tmp, |
|
const int4* __restrict__ scales_ptr, |
|
|
|
const int* __restrict__ g_idx, |
|
int num_groups, |
|
int prob_m, |
|
int prob_n, |
|
int prob_k, |
|
int* locks, |
|
bool use_fp32_reduce |
|
) {} |
|
|
|
} |
|
|
|
#else |
|
|
|
|
|
|
|
template <typename scalar_t> |
|
__device__ inline void mma(const typename ScalarType<scalar_t>::FragA& a_frag, |
|
const typename ScalarType<scalar_t>::FragB& frag_b, |
|
typename ScalarType<scalar_t>::FragC& frag_c) { |
|
const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag); |
|
const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b); |
|
float* c = reinterpret_cast<float*>(&frag_c); |
|
if constexpr (std::is_same<scalar_t, half>::value) { |
|
asm volatile( |
|
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 " |
|
"{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" |
|
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) |
|
: "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), |
|
"f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); |
|
} else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) { |
|
asm volatile( |
|
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 " |
|
"{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" |
|
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) |
|
: "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), |
|
"f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); |
|
} else { |
|
STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t); |
|
} |
|
} |
|
|
|
template <typename scalar_t> |
|
__device__ inline void mma_trans( |
|
const typename ScalarType<scalar_t>::FragA& a_frag, |
|
const typename ScalarType<scalar_t>::FragB& frag_b, |
|
const typename ScalarType<scalar_t>::FragB& frag_b2, |
|
typename ScalarType<scalar_t>::FragC& frag_c) { |
|
const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag); |
|
const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b); |
|
const uint32_t* b2 = reinterpret_cast<const uint32_t*>(&frag_b2); |
|
float* c = reinterpret_cast<float*>(&frag_c); |
|
if constexpr (std::is_same<scalar_t, half>::value) { |
|
asm volatile( |
|
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 " |
|
"{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" |
|
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) |
|
: "r"(b[0]), "r"(b2[0]), "r"(b[1]), "r"(b2[1]), "r"(a[0]), "r"(a[1]), |
|
"f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); |
|
} else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) { |
|
asm volatile( |
|
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 " |
|
"{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" |
|
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) |
|
: "r"(b[0]), "r"(b2[0]), "r"(b[1]), "r"(b2[1]), "r"(a[0]), "r"(a[1]), |
|
"f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); |
|
} else { |
|
STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t); |
|
} |
|
} |
|
|
|
|
|
|
|
template <int count, typename scalar_t> |
|
__device__ inline void ldsm(typename ScalarType<scalar_t>::FragA& frag_a, |
|
const void* smem_ptr) { |
|
uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a); |
|
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr)); |
|
if constexpr (count == 4) { |
|
asm volatile( |
|
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n" |
|
: "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3]) |
|
: "r"(smem)); |
|
} else if constexpr (count == 2) { |
|
asm volatile("ldmatrix.sync.aligned.m8n8.x2.shared.b16 {%0,%1}, [%2];\n" |
|
: "=r"(a[0]), "=r"(a[1]) |
|
: "r"(smem)); |
|
} else if constexpr (count == 1) { |
|
asm volatile("ldmatrix.sync.aligned.m8n8.x1.shared.b16 {%0}, [%1];\n" |
|
: "=r"(a[0]) |
|
: "r"(smem)); |
|
} else { |
|
static_assert(count == 1 || count == 2 || count == 4, "invalid count"); |
|
} |
|
} |
|
|
|
|
|
|
|
template <typename scalar_t> |
|
__device__ inline void scale(typename ScalarType<scalar_t>::FragB& frag_b, |
|
typename ScalarType<scalar_t>::FragS& frag_s, |
|
int i) { |
|
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2; |
|
scalar_t2 s = |
|
ScalarType<scalar_t>::num2num2(reinterpret_cast<scalar_t*>(&frag_s)[i]); |
|
frag_b[0] = __hmul2(frag_b[0], s); |
|
frag_b[1] = __hmul2(frag_b[1], s); |
|
} |
|
|
|
template <typename scalar_t> |
|
__device__ inline void scale_and_sub( |
|
typename ScalarType<scalar_t>::FragB& frag_b, scalar_t s, scalar_t zp) { |
|
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2; |
|
scalar_t2 s2 = ScalarType<scalar_t>::num2num2(s); |
|
scalar_t2 zp2 = ScalarType<scalar_t>::num2num2(zp); |
|
frag_b[0] = __hfma2(frag_b[0], s2, __hneg2(zp2)); |
|
frag_b[1] = __hfma2(frag_b[1], s2, __hneg2(zp2)); |
|
} |
|
|
|
template <typename scalar_t> |
|
__device__ inline void sub_zp(typename ScalarType<scalar_t>::FragB& frag_b, |
|
typename ScalarType<scalar_t>::scalar_t2& frag_zp, |
|
int i) { |
|
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2; |
|
scalar_t2 zp = |
|
ScalarType<scalar_t>::num2num2(reinterpret_cast<scalar_t*>(&frag_zp)[i]); |
|
frag_b[0] = __hsub2(frag_b[0], zp); |
|
frag_b[1] = __hsub2(frag_b[1], zp); |
|
} |
|
|
|
|
|
template <typename scalar_t> |
|
__device__ inline void scale4(typename ScalarType<scalar_t>::FragB& frag_b, |
|
typename ScalarType<scalar_t>::FragS& frag_s_1, |
|
typename ScalarType<scalar_t>::FragS& frag_s_2, |
|
typename ScalarType<scalar_t>::FragS& frag_s_3, |
|
typename ScalarType<scalar_t>::FragS& frag_s_4, |
|
int i) { |
|
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2; |
|
scalar_t2 s_val_1_2; |
|
s_val_1_2.x = reinterpret_cast<scalar_t*>(&frag_s_1)[i]; |
|
s_val_1_2.y = reinterpret_cast<scalar_t*>(&frag_s_2)[i]; |
|
|
|
scalar_t2 s_val_3_4; |
|
s_val_3_4.x = reinterpret_cast<scalar_t*>(&frag_s_3)[i]; |
|
s_val_3_4.y = reinterpret_cast<scalar_t*>(&frag_s_4)[i]; |
|
|
|
frag_b[0] = __hmul2(frag_b[0], s_val_1_2); |
|
frag_b[1] = __hmul2(frag_b[1], s_val_3_4); |
|
} |
|
|
|
|
|
template <typename scalar_t> |
|
__device__ inline void scale_float(float* c, |
|
typename ScalarType<scalar_t>::FragS& s) { |
|
scalar_t* s_ptr = reinterpret_cast<scalar_t*>(&s); |
|
c[0] = __fmul_rn(c[0], ScalarType<scalar_t>::num2float(s_ptr[0])); |
|
c[1] = __fmul_rn(c[1], ScalarType<scalar_t>::num2float(s_ptr[1])); |
|
} |
|
|
|
|
|
__device__ inline void barrier_acquire(int* lock, int count) { |
|
if (threadIdx.x == 0) { |
|
int state = -1; |
|
do |
|
|
|
|
|
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n" |
|
: "=r"(state) |
|
: "l"(lock)); |
|
while (state != count); |
|
} |
|
__syncthreads(); |
|
} |
|
|
|
|
|
__device__ inline void barrier_release(int* lock, bool reset = false) { |
|
__syncthreads(); |
|
if (threadIdx.x == 0) { |
|
if (reset) { |
|
lock[0] = 0; |
|
return; |
|
} |
|
int val = 1; |
|
|
|
|
|
asm volatile("fence.acq_rel.gpu;\n"); |
|
asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n" |
|
: |
|
: "l"(lock), "r"(val)); |
|
} |
|
} |
|
|
|
|
|
__device__ inline void wait_negative_and_add(int* lock) { |
|
if (threadIdx.x == 0) { |
|
int state = 0; |
|
do |
|
|
|
|
|
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n" |
|
: "=r"(state) |
|
: "l"(lock)); |
|
while (state >= 0); |
|
atomicAdd(lock, 1); |
|
} |
|
__syncthreads(); |
|
} |
|
|
|
template <typename scalar_t, |
|
const vllm::ScalarTypeId w_type_id, |
|
const int threads, |
|
const int thread_m_blocks, |
|
|
|
|
|
const int thread_n_blocks, |
|
const int thread_k_blocks, |
|
const bool m_block_size_8, |
|
|
|
const int stages, |
|
|
|
const int group_blocks, |
|
|
|
const bool is_zp_float |
|
> |
|
__global__ void Marlin( |
|
const int4* __restrict__ A, |
|
const int4* __restrict__ B, |
|
int4* __restrict__ C, |
|
int4* __restrict__ C_tmp, |
|
const int4* __restrict__ scales_ptr, |
|
|
|
const uint16_t* __restrict__ scale2_ptr, |
|
|
|
const int4* __restrict__ zp_ptr, |
|
|
|
const int* __restrict__ g_idx, |
|
int num_groups, |
|
int prob_m, |
|
int prob_n, |
|
int prob_k, |
|
int lda, |
|
int* locks, |
|
bool use_atomic_add, |
|
bool use_fp32_reduce, |
|
int max_shared_mem) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using Dtype = ScalarType<scalar_t>; |
|
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2; |
|
using FragA = typename ScalarType<scalar_t>::FragA; |
|
using FragB = typename ScalarType<scalar_t>::FragB; |
|
using FragC = typename ScalarType<scalar_t>::FragC; |
|
using FragS = typename ScalarType<scalar_t>::FragS; |
|
using FragZP = typename ScalarType<scalar_t>::FragZP; |
|
|
|
static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id); |
|
constexpr bool has_zp = w_type == vllm::kU4 || w_type == vllm::kU8; |
|
constexpr bool is_int_type = w_type == vllm::kU4 || w_type == vllm::kU8 || |
|
w_type == vllm::kU4B8 || w_type == vllm::kU8B128; |
|
|
|
constexpr bool dequant_skip_flop = |
|
!is_int_type || |
|
has_zp && !is_zp_float && !std::is_same<scalar_t, nv_bfloat16>::value || |
|
has_zp && !is_zp_float && !(w_type == vllm::kU8); |
|
|
|
scalar_t2 global_scale; |
|
|
|
if constexpr (w_type == vllm::kFE2M1f) { |
|
uint16_t val = scale2_ptr[0]; |
|
global_scale = Dtype::num2num2(*reinterpret_cast<scalar_t*>(&val)); |
|
} |
|
|
|
constexpr bool has_act_order = group_blocks == 0; |
|
constexpr int m_block_size = m_block_size_8 ? 8 : (16 * thread_m_blocks); |
|
|
|
constexpr int pack_factor = 32 / w_type.size_bits(); |
|
static_assert(thread_m_blocks == 1 || !m_block_size_8); |
|
|
|
|
|
|
|
int parallel = 1; |
|
if (prob_m > m_block_size) { |
|
parallel = prob_m / m_block_size; |
|
prob_m = m_block_size; |
|
} |
|
|
|
int k_tiles = prob_k / 16 / thread_k_blocks; |
|
int n_tiles = prob_n / 16 / thread_n_blocks; |
|
int iters = div_ceil(k_tiles * n_tiles * parallel, gridDim.x); |
|
|
|
if constexpr (!has_act_order && group_blocks != -1) { |
|
if (group_blocks >= thread_k_blocks) { |
|
|
|
|
|
|
|
iters = (group_blocks / thread_k_blocks) * |
|
div_ceil(iters, (group_blocks / thread_k_blocks)); |
|
} |
|
} |
|
|
|
int slice_row = (iters * blockIdx.x) % k_tiles; |
|
int slice_col_par = (iters * blockIdx.x) / k_tiles; |
|
int slice_col = slice_col_par; |
|
int slice_iters; |
|
int slice_count = |
|
0; |
|
int slice_idx; |
|
|
|
|
|
int par_id = 0; |
|
int locks_off = 0; |
|
|
|
|
|
|
|
if (slice_col_par >= n_tiles) { |
|
A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * lda / 8; |
|
C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8; |
|
slice_col = slice_col_par % n_tiles; |
|
par_id = slice_col_par / n_tiles; |
|
} |
|
if (parallel * n_tiles >= gridDim.x) { |
|
|
|
|
|
locks_off = blockIdx.x; |
|
} else { |
|
locks_off = (iters * blockIdx.x) / k_tiles - 1; |
|
} |
|
|
|
|
|
|
|
auto init_slice = [&](bool first_init = false) { |
|
slice_iters = |
|
iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); |
|
if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; |
|
if (slice_iters == 0) return; |
|
if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; |
|
slice_count = 1; |
|
slice_idx = 0; |
|
int col_first = iters * div_ceil(k_tiles * slice_col_par, iters); |
|
if (col_first <= k_tiles * (slice_col_par + 1)) { |
|
int col_off = col_first - k_tiles * slice_col_par; |
|
slice_count = div_ceil(k_tiles - col_off, iters); |
|
if (col_off > 0) slice_count++; |
|
int delta_first = iters * blockIdx.x - col_first; |
|
if (delta_first < 0 || (col_off == 0 && delta_first == 0)) |
|
slice_idx = slice_count - 1; |
|
else { |
|
slice_idx = slice_count - 1 - delta_first / iters; |
|
if (col_off > 0) slice_idx--; |
|
} |
|
} |
|
if (parallel * n_tiles >= gridDim.x) { |
|
if (slice_count > 1 && slice_idx == slice_count - 1) { |
|
locks_off++; |
|
} |
|
} else { |
|
locks_off++; |
|
} |
|
|
|
if (first_init && use_atomic_add && slice_count > 1 && slice_idx == 0) { |
|
constexpr int threads_per_m = 16 * thread_n_blocks / 8; |
|
int m_per_thread = |
|
div_ceil(thread_m_blocks * 16, threads / threads_per_m); |
|
if (m_block_size_8) m_per_thread = div_ceil(8, threads / threads_per_m); |
|
for (int i = 0; i < m_per_thread; i++) { |
|
int row = threads / threads_per_m * i + threadIdx.x / threads_per_m; |
|
if (row < prob_m) { |
|
int col = slice_col * 16 * thread_n_blocks / 8 + |
|
threadIdx.x % threads_per_m; |
|
C[row * prob_n / 8 + col] = {0, 0, 0, 0}; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
__syncthreads(); |
|
if (threadIdx.x == 0) locks[locks_off] = 1 - slice_count; |
|
} |
|
|
|
if (slice_col == n_tiles) { |
|
A += 16 * thread_m_blocks * lda / 8; |
|
C += 16 * thread_m_blocks * prob_n / 8; |
|
slice_col = 0; |
|
par_id++; |
|
} |
|
}; |
|
init_slice(true); |
|
|
|
|
|
|
|
|
|
int a_gl_stride = lda / 8; |
|
|
|
constexpr int a_sh_stride = 16 * thread_k_blocks / 8; |
|
|
|
constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8; |
|
|
|
int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); |
|
|
|
constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); |
|
|
|
constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4)); |
|
|
|
constexpr int a_sh_rd_delta_i = a_sh_stride * 16; |
|
|
|
constexpr int a_sh_stage = a_sh_stride * m_block_size; |
|
|
|
constexpr int a_sh_wr_iters = div_ceil(a_sh_stage, a_sh_wr_delta); |
|
|
|
|
|
int b_gl_stride = 16 * prob_n / (pack_factor * 4); |
|
constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4; |
|
constexpr int b_thread_vecs = w_type.size_bits() == 4 ? 1 : 2; |
|
constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs; |
|
|
|
int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; |
|
int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads); |
|
constexpr int b_sh_wr_delta = threads * b_thread_vecs; |
|
constexpr int b_sh_rd_delta = threads * b_thread_vecs; |
|
constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; |
|
constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; |
|
|
|
|
|
int s_gl_stride = prob_n / 8; |
|
constexpr int s_sh_stride = 16 * thread_n_blocks / 8; |
|
constexpr int s_tb_groups = |
|
!has_act_order && group_blocks != -1 && group_blocks < thread_k_blocks |
|
? thread_k_blocks / group_blocks / (w_type == vllm::kFE2M1f ? 2 : 1) |
|
: 1; |
|
constexpr int s_sh_stage = s_tb_groups * s_sh_stride; |
|
int s_gl_rd_delta = s_gl_stride; |
|
|
|
|
|
constexpr int tb_k = 16 * thread_k_blocks; |
|
constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0; |
|
|
|
|
|
constexpr int act_s_max_num_groups = 32; |
|
int act_s_col_stride = 1; |
|
int act_s_col_warp_stride = act_s_col_stride * 8; |
|
|
|
int tb_n_warps = thread_n_blocks / 4; |
|
int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; |
|
|
|
|
|
int zp_gl_stride = is_zp_float ? prob_n / 8 : (prob_n / pack_factor) / 4; |
|
constexpr int zp_sh_stride = is_zp_float |
|
? 16 * thread_n_blocks / 8 |
|
: ((16 * thread_n_blocks) / pack_factor) / 4; |
|
constexpr int zp_tb_groups = s_tb_groups; |
|
constexpr int zp_sh_stage = has_zp ? zp_tb_groups * zp_sh_stride : 0; |
|
int zp_gl_rd_delta = zp_gl_stride; |
|
|
|
|
|
int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + |
|
(threadIdx.x % a_gl_rd_delta_o); |
|
a_gl_rd += a_gl_rd_delta_o * slice_row; |
|
|
|
int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + |
|
(threadIdx.x % a_gl_rd_delta_o); |
|
|
|
int a_sh_rd = |
|
a_sh_stride * ((threadIdx.x % 32) % (16 / (m_block_size_8 ? 2 : 1))) + |
|
(threadIdx.x % 32) / (16 / (m_block_size_8 ? 2 : 1)); |
|
a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); |
|
|
|
int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) + |
|
(threadIdx.x % b_sh_stride_threads) * b_thread_vecs; |
|
b_gl_rd += b_sh_stride * slice_col; |
|
b_gl_rd += b_gl_rd_delta_o * slice_row; |
|
auto b_sh_wr = threadIdx.x * b_thread_vecs; |
|
auto b_sh_rd = threadIdx.x * b_thread_vecs; |
|
|
|
|
|
constexpr int k_iter_size = tb_k / b_sh_wr_iters; |
|
int slice_k_start = tb_k * slice_row; |
|
int slice_k_finish = slice_k_start + tb_k * slice_iters; |
|
int slice_k_start_shared_fetch = slice_k_start; |
|
int slice_n_offset = act_s_col_tb_stride * slice_col; |
|
|
|
|
|
int s_gl_rd; |
|
if constexpr (!has_act_order) { |
|
if constexpr (group_blocks == -1) { |
|
s_gl_rd = s_sh_stride * slice_col + threadIdx.x; |
|
} else { |
|
s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) / |
|
(w_type == vllm::kFE2M1f ? 2 : 1) + |
|
s_sh_stride * slice_col + threadIdx.x; |
|
} |
|
} |
|
auto s_sh_wr = threadIdx.x; |
|
bool s_sh_wr_pred = threadIdx.x < s_sh_stride; |
|
|
|
|
|
int zp_gl_rd; |
|
if constexpr (has_zp) { |
|
if constexpr (group_blocks == -1) { |
|
zp_gl_rd = zp_sh_stride * slice_col + threadIdx.x; |
|
} else { |
|
zp_gl_rd = zp_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + |
|
zp_sh_stride * slice_col + threadIdx.x; |
|
} |
|
} |
|
auto zp_sh_wr = threadIdx.x; |
|
bool zp_sh_wr_pred = threadIdx.x < zp_sh_stride; |
|
|
|
|
|
|
|
|
|
int s_sh_rd; |
|
if constexpr (group_blocks != -1 && w_type == vllm::kFE2M1f) { |
|
auto warp_id = threadIdx.x / 32; |
|
int n_warps = thread_n_blocks / 4; |
|
int warp_row = warp_id / n_warps; |
|
|
|
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
(threadIdx.x % 32) / 4; |
|
s_sh_rd = s_sh_rd * 2 + warp_row % 2; |
|
|
|
} else if constexpr (group_blocks != -1) |
|
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
(threadIdx.x % 32) / 4; |
|
else if constexpr (group_blocks == -1 && |
|
(m_block_size_8 || (has_zp && !dequant_skip_flop))) |
|
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
(threadIdx.x % 32) / 8; |
|
else |
|
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
(threadIdx.x % 32) % 4; |
|
|
|
|
|
|
|
constexpr int num_col_threads = 8; |
|
constexpr int num_row_threads = 4; |
|
constexpr int num_ints_per_thread = 8 / pack_factor; |
|
int zp_sh_rd; |
|
if constexpr (has_zp) { |
|
if constexpr (is_zp_float) { |
|
if constexpr (group_blocks != -1) { |
|
zp_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
(threadIdx.x % 32) / 4; |
|
} |
|
} else { |
|
zp_sh_rd = num_ints_per_thread * num_col_threads * |
|
((threadIdx.x / 32) % (thread_n_blocks / 4)) + |
|
num_ints_per_thread * ((threadIdx.x % 32) / num_row_threads); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
bool a_sh_wr_pred[a_sh_wr_iters]; |
|
#pragma unroll |
|
for (int i = 0; i < a_sh_wr_iters; i++) |
|
a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto transform_a = [&](int i) { |
|
int row = i / a_gl_rd_delta_o; |
|
return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ (row % 8); |
|
}; |
|
|
|
|
|
|
|
int a_sh_wr_trans[a_sh_wr_iters]; |
|
#pragma unroll |
|
for (int i = 0; i < a_sh_wr_iters; i++) |
|
a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); |
|
int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) { |
|
#pragma unroll |
|
for (int j = 0; j < thread_m_blocks; j++) |
|
a_sh_rd_trans[i][j] = |
|
transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
const int4* B_ptr[b_sh_wr_iters]; |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) |
|
B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; |
|
|
|
extern __shared__ int4 sh[]; |
|
|
|
constexpr int sh_red_size = (2 * thread_n_blocks + 1) * 16 * thread_m_blocks; |
|
constexpr int sh_b_size = stages * b_sh_stage; |
|
int4* sh_b = sh; |
|
int4* sh_red = sh; |
|
int4* sh_g_idx = sh_b + (sh_red_size > sh_b_size ? sh_red_size : sh_b_size); |
|
int4* sh_zp = sh_g_idx + (stages * g_idx_stage); |
|
constexpr int sh_s_size = has_act_order ? (act_s_max_num_groups * s_sh_stride) |
|
: (stages * s_sh_stage); |
|
int4* sh_s = sh_zp + (stages * zp_sh_stage); |
|
|
|
|
|
static_assert(thread_m_blocks * 16 * thread_n_blocks * 16 / 8 <= |
|
stages * b_sh_stage); |
|
int4* sh_a = sh_s + sh_s_size; |
|
|
|
|
|
|
|
|
|
|
|
FragA frag_a[2][thread_m_blocks]; |
|
I4 frag_b_quant[2][b_thread_vecs]; |
|
FragC frag_c[thread_m_blocks][4][2]; |
|
FragS frag_s[2][4]; |
|
FragS act_frag_s[2][4][4]; |
|
int frag_qzp[2][num_ints_per_thread]; |
|
FragZP frag_zp; |
|
FragZP frag_zpf[2]; |
|
|
|
|
|
auto zero_accums = [&]() { |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) |
|
reinterpret_cast<float*>(frag_c)[i] = 0; |
|
}; |
|
|
|
int sh_first_group_id = -1; |
|
int sh_num_groups = -1; |
|
|
|
auto fetch_act_order_scales_to_shared = [&](bool is_async, int first_group_id, |
|
int last_group_id) { |
|
sh_first_group_id = first_group_id; |
|
sh_num_groups = last_group_id - first_group_id + 1; |
|
|
|
if (sh_num_groups > act_s_max_num_groups) { |
|
sh_num_groups = act_s_max_num_groups; |
|
} |
|
|
|
if (sh_first_group_id + sh_num_groups > num_groups) { |
|
sh_num_groups = num_groups - sh_first_group_id; |
|
} |
|
|
|
int row_offset = first_group_id * s_gl_stride; |
|
|
|
if (is_async) { |
|
for (int i = 0; i < sh_num_groups; i++) { |
|
if (threadIdx.x < s_sh_stride) { |
|
cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x], |
|
&scales_ptr[row_offset + (i * s_gl_stride) + |
|
slice_n_offset + threadIdx.x]); |
|
} |
|
} |
|
} else { |
|
for (int i = 0; i < sh_num_groups; i++) { |
|
if (threadIdx.x < s_sh_stride) { |
|
sh_s[(i * s_sh_stride) + threadIdx.x] = |
|
scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + |
|
threadIdx.x]; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { |
|
if (pred) { |
|
int4* sh_a_stage = sh_a + a_sh_stage * pipe; |
|
#pragma unroll |
|
for (int i = 0; i < a_sh_wr_iters; i++) { |
|
cp_async4_pred( |
|
&sh_a_stage[a_sh_wr_trans[i]], |
|
&A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off], |
|
a_sh_wr_pred[i]); |
|
} |
|
int4* sh_b_stage = sh_b + b_sh_stage * pipe; |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) { |
|
#pragma unroll |
|
for (int j = 0; j < b_thread_vecs; j++) { |
|
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j); |
|
} |
|
|
|
B_ptr[i] += b_gl_rd_delta_o; |
|
} |
|
|
|
if constexpr (has_act_order) { |
|
|
|
int full_pipe = a_off; |
|
int cur_k = slice_k_start_shared_fetch + tb_k * full_pipe; |
|
if (cur_k < prob_k && cur_k < slice_k_finish) { |
|
int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; |
|
|
|
int4 const* cur_g_idx_stage_ptr = |
|
reinterpret_cast<int4 const*>(&g_idx[cur_k]); |
|
|
|
if (threadIdx.x < g_idx_stage) { |
|
cp_async4_pred(&sh_g_idx_stage[threadIdx.x], |
|
&cur_g_idx_stage_ptr[threadIdx.x]); |
|
} |
|
} |
|
} else { |
|
if constexpr (group_blocks != -1) { |
|
int4* sh_s_stage = sh_s + s_sh_stage * pipe; |
|
|
|
if constexpr (group_blocks >= thread_k_blocks) { |
|
|
|
if (pipe % (group_blocks / thread_k_blocks) == 0) { |
|
if (s_sh_wr_pred) { |
|
cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]); |
|
} |
|
s_gl_rd += s_gl_rd_delta; |
|
} |
|
} else { |
|
for (int i = 0; i < s_tb_groups; i++) { |
|
if (s_sh_wr_pred) { |
|
cp_async4(&sh_s_stage[i * s_sh_stride + s_sh_wr], |
|
&scales_ptr[s_gl_rd]); |
|
} |
|
s_gl_rd += s_gl_rd_delta; |
|
} |
|
} |
|
} |
|
|
|
if constexpr (has_zp && group_blocks != -1) { |
|
int4* sh_zp_stage = sh_zp + zp_sh_stage * pipe; |
|
|
|
if constexpr (group_blocks >= thread_k_blocks) { |
|
|
|
if (pipe % (group_blocks / thread_k_blocks) == 0) { |
|
if (zp_sh_wr_pred) { |
|
cp_async4(&sh_zp_stage[zp_sh_wr], &zp_ptr[zp_gl_rd]); |
|
} |
|
zp_gl_rd += zp_gl_rd_delta; |
|
} |
|
} else { |
|
for (int i = 0; i < zp_tb_groups; i++) { |
|
if (zp_sh_wr_pred) { |
|
cp_async4(&sh_zp_stage[i * zp_sh_stride + zp_sh_wr], |
|
&zp_ptr[zp_gl_rd]); |
|
} |
|
zp_gl_rd += zp_gl_rd_delta; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
cp_async_fence(); |
|
}; |
|
|
|
auto fetch_col_zp_to_shared = [&]() { |
|
if (zp_sh_wr_pred) { |
|
cp_async4(&sh_zp[zp_sh_wr], &zp_ptr[zp_gl_rd]); |
|
} |
|
}; |
|
|
|
auto fetch_col_scale_to_shared = [&]() { |
|
if (s_sh_wr_pred) { |
|
cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); |
|
} |
|
}; |
|
|
|
|
|
auto wait_for_stage = [&]() { |
|
|
|
|
|
|
|
|
|
cp_async_wait<stages - 2>(); |
|
__syncthreads(); |
|
}; |
|
|
|
|
|
|
|
auto fetch_to_registers = [&](int k, int pipe) { |
|
int4* sh_a_stage = sh_a + a_sh_stage * pipe; |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) |
|
ldsm<m_block_size_8 ? 2 : 4, scalar_t>( |
|
frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); |
|
int4* sh_b_stage = sh_b + b_sh_stage * pipe; |
|
|
|
#pragma unroll |
|
for (int i = 0; i < b_thread_vecs; i++) { |
|
frag_b_quant[k % 2][i] = *reinterpret_cast<I4*>( |
|
&sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]); |
|
} |
|
}; |
|
|
|
bool is_same_group[stages]; |
|
int same_group_id[stages]; |
|
|
|
auto init_same_group = [&](int pipe) { |
|
if constexpr (!has_act_order) { |
|
return; |
|
} |
|
|
|
int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; |
|
int* sh_g_idx_int_ptr = reinterpret_cast<int*>(sh_g_idx_stage); |
|
|
|
int group_id_1 = sh_g_idx_int_ptr[0]; |
|
int group_id_2 = sh_g_idx_int_ptr[tb_k - 1]; |
|
|
|
is_same_group[pipe] = group_id_1 == group_id_2; |
|
same_group_id[pipe] = group_id_1; |
|
}; |
|
|
|
auto fetch_scales_to_registers = [&](int k, int full_pipe) { |
|
int pipe = full_pipe % stages; |
|
|
|
if constexpr (!has_act_order) { |
|
|
|
if constexpr (group_blocks == -1) { |
|
|
|
if (k == 0 && full_pipe == 0) { |
|
reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd]; |
|
reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4]; |
|
} |
|
} else if constexpr (group_blocks != -1) { |
|
if constexpr (group_blocks >= thread_k_blocks) { |
|
if (k % b_sh_wr_iters == 0) { |
|
int4* sh_s_stage = |
|
sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) * |
|
(pipe / (group_blocks / thread_k_blocks))); |
|
reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd]; |
|
} else { |
|
reinterpret_cast<int4*>(&frag_s[1])[0] = |
|
reinterpret_cast<int4*>(&frag_s[0])[0]; |
|
} |
|
} else { |
|
auto warp_id = threadIdx.x / 32; |
|
int n_warps = thread_n_blocks / 4; |
|
|
|
int warp_row = warp_id / n_warps; |
|
|
|
int cur_k = warp_row * 16; |
|
cur_k += k_iter_size * (k % b_sh_wr_iters); |
|
|
|
int k_blocks = cur_k / 16; |
|
int cur_group_id = |
|
k_blocks / (group_blocks * (w_type == vllm::kFE2M1f ? 2 : 1)); |
|
|
|
int4* sh_s_stage = sh_s + s_sh_stage * pipe; |
|
|
|
if constexpr (w_type_id != vllm::kFE2M1f.id()) { |
|
reinterpret_cast<int4*>(&frag_s[k % 2])[0] = |
|
sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride]; |
|
} else { |
|
reinterpret_cast<int2*>(&frag_s[k % 2])[0] = |
|
reinterpret_cast<int2*>( |
|
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)]; |
|
} |
|
} |
|
} |
|
|
|
return; |
|
} |
|
|
|
|
|
|
|
|
|
int cur_k = slice_k_start + tb_k * full_pipe; |
|
if (cur_k >= prob_k || cur_k >= slice_k_finish) { |
|
return; |
|
} |
|
|
|
|
|
|
|
cur_k = 0; |
|
|
|
|
|
cur_k += k_iter_size * (k % b_sh_wr_iters); |
|
|
|
|
|
|
|
auto warp_id = threadIdx.x / 32; |
|
int n_warps = |
|
thread_n_blocks / 4; |
|
|
|
int warp_row = warp_id / n_warps; |
|
int warp_col = warp_id % n_warps; |
|
|
|
cur_k += warp_row * 16; |
|
|
|
auto th_id = threadIdx.x % 32; |
|
cur_k += (th_id % 4) * 2; |
|
|
|
int s_col_shift = |
|
(act_s_col_warp_stride * warp_col) + |
|
(th_id / 4) * act_s_col_stride; |
|
|
|
if (is_same_group[pipe]) { |
|
if (k % 2 == 0) { |
|
*(reinterpret_cast<int4*>(&(act_frag_s[k % 2][0][0]))) = |
|
sh_s[(same_group_id[pipe] - sh_first_group_id) * s_sh_stride + |
|
s_col_shift]; |
|
} else { |
|
*(reinterpret_cast<int4*>(&(act_frag_s[k % 2][0][0]))) = |
|
*(reinterpret_cast<int4*>(&(act_frag_s[(k - 1) % 2][0][0]))); |
|
} |
|
|
|
for (int i = 1; i < 4; i++) { |
|
*(reinterpret_cast<int4*>(&(act_frag_s[k % 2][i][0]))) = |
|
*(reinterpret_cast<int4*>(&(act_frag_s[k % 2][0][0]))); |
|
} |
|
return; |
|
} |
|
|
|
int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; |
|
int* sh_g_idx_int_ptr = reinterpret_cast<int*>(sh_g_idx_stage); |
|
|
|
constexpr int k_frag_offsets[4] = {0, 1, 8, |
|
9}; |
|
|
|
#pragma unroll |
|
for (int i = 0; i < 4; i++) { |
|
int actual_k = cur_k + k_frag_offsets[i]; |
|
|
|
int group_id = sh_g_idx_int_ptr[actual_k]; |
|
int rel_group_id = group_id - sh_first_group_id; |
|
|
|
*(reinterpret_cast<int4*>(&(act_frag_s[k % 2][i][0]))) = |
|
sh_s[rel_group_id * s_sh_stride + s_col_shift]; |
|
} |
|
}; |
|
|
|
auto fetch_zp_to_registers = [&](int k, int full_pipe) { |
|
|
|
|
|
|
|
static_assert(!has_zp || group_blocks != 0); |
|
|
|
if constexpr (has_zp && !is_zp_float) { |
|
int pipe = full_pipe % stages; |
|
|
|
if constexpr (group_blocks == -1) { |
|
|
|
if (k == 0 && full_pipe == 0) { |
|
#pragma unroll |
|
for (int i = 0; i < num_ints_per_thread; i++) { |
|
frag_qzp[k % 2][i] = (reinterpret_cast<int*>(sh_zp))[zp_sh_rd + i]; |
|
} |
|
} |
|
|
|
} else if constexpr (group_blocks >= thread_k_blocks) { |
|
if (k % b_sh_wr_iters == 0) { |
|
int4* sh_zp_stage = |
|
sh_zp + zp_sh_stage * ((group_blocks / thread_k_blocks) * |
|
(pipe / (group_blocks / thread_k_blocks))); |
|
#pragma unroll |
|
for (int i = 0; i < num_ints_per_thread; i++) { |
|
frag_qzp[k % 2][i] = |
|
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i]; |
|
} |
|
} |
|
} else { |
|
auto warp_id = threadIdx.x / 32; |
|
int n_warps = thread_n_blocks / 4; |
|
|
|
int warp_row = warp_id / n_warps; |
|
|
|
int cur_k = warp_row * 16; |
|
cur_k += k_iter_size * (k % b_sh_wr_iters); |
|
|
|
int k_blocks = cur_k / 16; |
|
int cur_group_id = 0; |
|
|
|
|
|
#pragma nv_diagnostic push |
|
#pragma nv_diag_suppress divide_by_zero |
|
cur_group_id = k_blocks / group_blocks; |
|
#pragma nv_diagnostic pop |
|
|
|
int4* sh_zp_stage = sh_zp + zp_sh_stage * pipe; |
|
|
|
sh_zp_stage += cur_group_id * zp_sh_stride; |
|
|
|
#pragma unroll |
|
for (int i = 0; i < num_ints_per_thread; i++) { |
|
frag_qzp[k % 2][i] = |
|
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i]; |
|
} |
|
} |
|
} |
|
|
|
else if constexpr (has_zp && is_zp_float) { |
|
int pipe = full_pipe % stages; |
|
|
|
if constexpr (group_blocks != -1) { |
|
if constexpr (group_blocks >= thread_k_blocks) { |
|
if (k % b_sh_wr_iters == 0) { |
|
int4* sh_zp_stage = |
|
sh_zp + |
|
zp_sh_stage * ((group_blocks / thread_k_blocks) * |
|
(pipe / (group_blocks / thread_k_blocks))); |
|
reinterpret_cast<int4*>(&frag_zpf[k % 2])[0] = |
|
sh_zp_stage[zp_sh_rd]; |
|
} |
|
} else { |
|
auto warp_id = threadIdx.x / 32; |
|
int n_warps = thread_n_blocks / 4; |
|
|
|
int warp_row = warp_id / n_warps; |
|
|
|
int cur_k = warp_row * 16; |
|
cur_k += k_iter_size * (k % b_sh_wr_iters); |
|
|
|
int k_blocks = cur_k / 16; |
|
|
|
#pragma nv_diagnostic push |
|
#pragma nv_diag_suppress divide_by_zero |
|
int cur_group_id = k_blocks / group_blocks; |
|
#pragma nv_diagnostic pop |
|
|
|
int4* sh_zp_stage = sh_zp + zp_sh_stage * pipe; |
|
|
|
reinterpret_cast<int4*>(&frag_zpf[k % 2])[0] = |
|
sh_zp_stage[zp_sh_rd + cur_group_id * zp_sh_stride]; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
auto dequant_data = [&](int q, scalar_t2* frag_b_ptr) { |
|
dequant<scalar_t2, w_type_id, dequant_skip_flop>(q, frag_b_ptr); |
|
}; |
|
|
|
|
|
bool is_first_matmul_in_slice = true; |
|
auto matmul = [&](int k) { |
|
int k2 = k % 2; |
|
const bool is_new_zp = |
|
((group_blocks != -1) && (group_blocks < thread_k_blocks || k == 0)) || |
|
(group_blocks == -1 && is_first_matmul_in_slice); |
|
if constexpr (has_zp && !is_zp_float) { |
|
if (is_new_zp) { |
|
if constexpr (group_blocks == -1) is_first_matmul_in_slice = false; |
|
FragB frag_zp_0; |
|
FragB frag_zp_1; |
|
int zp_quant_0, zp_quant_1; |
|
|
|
if constexpr (w_type.size_bits() == 4) { |
|
zp_quant_0 = frag_qzp[k2][0]; |
|
zp_quant_1 = zp_quant_0 >> 8; |
|
} else { |
|
static_assert(w_type.size_bits() == 8); |
|
zp_quant_0 = frag_qzp[k2][0]; |
|
zp_quant_1 = frag_qzp[k2][1]; |
|
} |
|
|
|
dequant_data(zp_quant_0, reinterpret_cast<scalar_t2*>(&frag_zp)); |
|
dequant_data(zp_quant_1, reinterpret_cast<scalar_t2*>(&frag_zp) + 2); |
|
} |
|
} |
|
if constexpr (!dequant_skip_flop && has_zp && is_zp_float) { |
|
if (is_new_zp) { |
|
reinterpret_cast<int4*>(&frag_zp)[0] = |
|
reinterpret_cast<int4*>(&frag_zpf[k2])[0]; |
|
} |
|
} |
|
|
|
if constexpr (w_type == vllm::kFE2M1f) { |
|
int s_quant_0 = reinterpret_cast<int*>(frag_s[k2])[0]; |
|
int s_quant_1 = reinterpret_cast<int*>(frag_s[k2])[1]; |
|
|
|
dequant_fp8_scales<scalar_t2>(s_quant_0, |
|
reinterpret_cast<scalar_t2*>(&frag_s[k2])); |
|
dequant_fp8_scales<scalar_t2>( |
|
s_quant_1, reinterpret_cast<scalar_t2*>(&frag_s[k2]) + 2); |
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
FragB frag_b0; |
|
FragB frag_b1; |
|
int b_quant_0, b_quant_1; |
|
|
|
if constexpr (w_type_id == vllm::kFE2M1f.id()) { |
|
b_quant_1 = frag_b_quant[k2][0][j]; |
|
b_quant_0 = b_quant_1 << 8; |
|
} else if constexpr (w_type.size_bits() == 4) { |
|
b_quant_0 = frag_b_quant[k2][0][j]; |
|
b_quant_1 = b_quant_0 >> 8; |
|
} else { |
|
static_assert(w_type.size_bits() == 8); |
|
int* frag_b_quant_ptr = reinterpret_cast<int*>(frag_b_quant[k2]); |
|
b_quant_0 = frag_b_quant_ptr[j * 2 + 0]; |
|
b_quant_1 = frag_b_quant_ptr[j * 2 + 1]; |
|
} |
|
|
|
dequant_data(b_quant_0, reinterpret_cast<scalar_t2*>(&frag_b0)); |
|
dequant_data(b_quant_1, reinterpret_cast<scalar_t2*>(&frag_b1)); |
|
|
|
if constexpr (dequant_skip_flop && has_zp && !is_zp_float) { |
|
sub_zp<scalar_t>(frag_b0, frag_zp[j], 0); |
|
sub_zp<scalar_t>(frag_b1, frag_zp[j], 1); |
|
} |
|
|
|
|
|
if constexpr (has_act_order) { |
|
static_assert(group_blocks != -1); |
|
scale4<scalar_t>(frag_b0, act_frag_s[k2][0][j], act_frag_s[k2][1][j], |
|
act_frag_s[k2][2][j], act_frag_s[k2][3][j], 0); |
|
scale4<scalar_t>(frag_b1, act_frag_s[k2][0][j], act_frag_s[k2][1][j], |
|
act_frag_s[k2][2][j], act_frag_s[k2][3][j], 1); |
|
} else if constexpr (!dequant_skip_flop && has_zp && !is_zp_float && |
|
group_blocks == -1) { |
|
int idx = (threadIdx.x / 4) % 2; |
|
scalar_t2 s2 = Dtype::nums2num2( |
|
reinterpret_cast<scalar_t*>(&frag_s[j / 2][j % 2 * 2 + 0])[idx], |
|
reinterpret_cast<scalar_t*>(&frag_s[j / 2][j % 2 * 2 + 1])[idx]); |
|
if (is_new_zp) frag_zp[j] = __hmul2(frag_zp[j], s2); |
|
scale_and_sub<scalar_t>(frag_b0, s2.x, frag_zp[j].x); |
|
scale_and_sub<scalar_t>(frag_b1, s2.y, frag_zp[j].y); |
|
} else if constexpr (!dequant_skip_flop && has_zp && group_blocks != -1) { |
|
if (is_new_zp) |
|
frag_zp[j] = __hmul2(frag_zp[j], |
|
*reinterpret_cast<scalar_t2*>(&frag_s[k2][j])); |
|
scale_and_sub<scalar_t>(frag_b0, frag_s[k2][j][0].x, frag_zp[j].x); |
|
scale_and_sub<scalar_t>(frag_b1, frag_s[k2][j][0].y, frag_zp[j].y); |
|
} else if constexpr (group_blocks != -1) { |
|
scale<scalar_t>(frag_b0, frag_s[k2][j], 0); |
|
scale<scalar_t>(frag_b1, frag_s[k2][j], 1); |
|
} |
|
|
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) { |
|
if constexpr (m_block_size_8) { |
|
mma_trans<scalar_t>(frag_a[k2][i], frag_b0, frag_b1, frag_c[i][j][0]); |
|
} else { |
|
mma<scalar_t>(frag_a[k2][i], frag_b0, frag_c[i][j][0]); |
|
mma<scalar_t>(frag_a[k2][i], frag_b1, frag_c[i][j][1]); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
auto thread_block_reduce = [&]() { |
|
constexpr int red_off = threads / b_sh_stride_threads / 2; |
|
if (red_off >= 1) { |
|
auto red_idx = threadIdx.x / b_sh_stride_threads; |
|
constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2; |
|
constexpr int red_sh_delta = b_sh_stride_threads; |
|
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) + |
|
(threadIdx.x % b_sh_stride_threads); |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
for (int m_block = 0; m_block < thread_m_blocks; m_block++) { |
|
#pragma unroll |
|
for (int i = red_off; i > 0; i /= 2) { |
|
if (i <= red_idx && red_idx < 2 * i) { |
|
#pragma unroll |
|
for (int j = 0; j < 4 * 2; j += (m_block_size_8 ? 2 : 1)) { |
|
int red_sh_wr = |
|
red_sh_delta * j + (red_sh_rd - red_sh_stride * i); |
|
if (i < red_off) { |
|
float* c_rd = reinterpret_cast<float*>( |
|
&sh_red[red_sh_delta * j + red_sh_rd]); |
|
float* c_wr = reinterpret_cast<float*>(&sh_red[red_sh_wr]); |
|
#pragma unroll |
|
for (int k = 0; k < 4; k++) |
|
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] += |
|
c_rd[k] + c_wr[k]; |
|
} |
|
sh_red[red_sh_wr] = |
|
reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j]; |
|
} |
|
} |
|
__syncthreads(); |
|
} |
|
if (red_idx == 0) { |
|
#pragma unroll |
|
for (int i = 0; i < 4 * 2; i += (m_block_size_8 ? 2 : 1)) { |
|
float* c_rd = |
|
reinterpret_cast<float*>(&sh_red[red_sh_delta * i + red_sh_rd]); |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) |
|
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] += |
|
c_rd[j]; |
|
} |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
auto global_reduce_fp16 = [&](bool first = false, bool last = false) { |
|
|
|
|
|
|
|
constexpr int active_threads = 32 * thread_n_blocks / 4; |
|
if (threadIdx.x < active_threads) { |
|
int c_gl_stride = prob_n / 8; |
|
int c_gl_wr_delta_o = 8 * c_gl_stride; |
|
int c_gl_wr_delta_i = 4 * (active_threads / 32); |
|
int c_gl_wr; |
|
if constexpr (m_block_size_8) { |
|
c_gl_wr = c_gl_stride * ((threadIdx.x % 4) * 2) + |
|
4 * (threadIdx.x / 32) + (threadIdx.x % 32) / 8; |
|
c_gl_wr += (2 * thread_n_blocks) * slice_col; |
|
} else { |
|
c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + |
|
4 * (threadIdx.x / 32) + threadIdx.x % 4; |
|
c_gl_wr += (2 * thread_n_blocks) * slice_col; |
|
} |
|
constexpr int c_sh_wr_delta = active_threads; |
|
auto c_sh_wr = threadIdx.x; |
|
|
|
int row = (threadIdx.x % 32) / 4; |
|
|
|
if (!first) { |
|
|
|
|
|
|
|
#pragma unroll |
|
for (int i = 0; i < (m_block_size_8 ? 2 : thread_m_blocks * 4); i++) { |
|
if constexpr (m_block_size_8) { |
|
cp_async4_pred(&sh_red[c_sh_wr + c_sh_wr_delta * i], |
|
&C[c_gl_wr + i * c_gl_stride + |
|
(threadIdx.x % 8) / 4 * c_gl_wr_delta_i], |
|
(threadIdx.x % 4) * 2 + i < prob_m); |
|
} else { |
|
cp_async4_pred( |
|
&sh_red[c_sh_wr + c_sh_wr_delta * i], |
|
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + |
|
c_gl_wr_delta_i * (i % 2)], |
|
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m); |
|
} |
|
} |
|
cp_async_fence(); |
|
cp_async_wait<0>(); |
|
} |
|
|
|
#pragma unroll |
|
for (int i = 0; i < (m_block_size_8 ? 2 : thread_m_blocks * 4); i++) { |
|
bool mask = (!m_block_size_8) && (i < (thread_m_blocks - 1) * 4 || |
|
8 * (i / 2) + row < prob_m) || |
|
(m_block_size_8) && ((threadIdx.x % 4) * 2 + i < prob_m); |
|
if (mask) { |
|
if (!first) { |
|
int4 c_red = sh_red[c_sh_wr + i * c_sh_wr_delta]; |
|
#pragma unroll |
|
for (int j = 0; j < 2 * 4; j++) { |
|
int delta = 0; |
|
if constexpr (m_block_size_8) { |
|
delta = j % 2 == 1 ? -2 : 0; |
|
} |
|
reinterpret_cast<float*>( |
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4) + delta] += |
|
Dtype::num2float(reinterpret_cast<scalar_t*>(&c_red)[j]); |
|
} |
|
} |
|
if (!last) { |
|
int4 c; |
|
#pragma unroll |
|
for (int j = 0; j < 2 * 4; j++) { |
|
int delta = 0; |
|
if constexpr (m_block_size_8) { |
|
delta = j % 2 == 1 ? -2 : 0; |
|
} |
|
reinterpret_cast<scalar_t*>(&c)[j] = |
|
Dtype::float2num(reinterpret_cast<float*>( |
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4) + delta]); |
|
} |
|
if constexpr (m_block_size_8) |
|
C[c_gl_wr + i * c_gl_stride + |
|
(threadIdx.x % 8) / 4 * c_gl_wr_delta_i] = c; |
|
else |
|
C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + |
|
c_gl_wr_delta_i * (i % 2)] = c; |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
auto global_reduce_fp32 = [&](bool first = false, bool last = false) { |
|
constexpr int tb_m = thread_m_blocks * 16; |
|
constexpr int tb_n = thread_n_blocks * 16; |
|
|
|
constexpr int c_size = tb_m * tb_n * sizeof(float) / 16; |
|
|
|
constexpr int active_threads = 32 * thread_n_blocks / 4; |
|
bool is_th_active = threadIdx.x < active_threads; |
|
|
|
constexpr int num_floats = thread_m_blocks * 4 * 2 * 4; |
|
constexpr int th_size = num_floats * sizeof(float) / 16; |
|
|
|
int c_cur_offset = locks_off * c_size; |
|
|
|
if (!is_th_active) { |
|
return; |
|
} |
|
|
|
if (!first) { |
|
float* frag_c_ptr = reinterpret_cast<float*>(&frag_c); |
|
#pragma unroll |
|
for (int k = 0; k < th_size; k += (m_block_size_8 ? 2 : 1)) { |
|
sh_red[threadIdx.x] = |
|
C_tmp[c_cur_offset + active_threads * k + threadIdx.x]; |
|
|
|
float* sh_c_ptr = reinterpret_cast<float*>(&sh_red[threadIdx.x]); |
|
#pragma unroll |
|
for (int f = 0; f < 4; f++) { |
|
frag_c_ptr[k * 4 + f] += sh_c_ptr[f]; |
|
} |
|
} |
|
} |
|
|
|
if (!last) { |
|
int4* frag_c_ptr = reinterpret_cast<int4*>(&frag_c); |
|
#pragma unroll |
|
for (int k = 0; k < th_size; k += (m_block_size_8 ? 2 : 1)) { |
|
C_tmp[c_cur_offset + active_threads * k + threadIdx.x] = frag_c_ptr[k]; |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
auto write_result = [&]() { |
|
int c_gl_stride = prob_n / 8; |
|
constexpr int c_sh_stride = 2 * thread_n_blocks + 1; |
|
int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); |
|
constexpr int c_sh_rd_delta = |
|
c_sh_stride * (threads / (2 * thread_n_blocks)); |
|
|
|
int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + |
|
(threadIdx.x % (2 * thread_n_blocks)); |
|
c_gl_wr += (2 * thread_n_blocks) * slice_col; |
|
int c_sh_wr; |
|
if constexpr (m_block_size_8) { |
|
c_sh_wr = (8 * c_sh_stride) * ((threadIdx.x % 32) % 4 * 2) + |
|
(threadIdx.x % 32) / 4; |
|
c_sh_wr += 64 * (threadIdx.x / 32); |
|
} else { |
|
c_sh_wr = |
|
(4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; |
|
c_sh_wr += 32 * (threadIdx.x / 32); |
|
} |
|
|
|
int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + |
|
(threadIdx.x % (2 * thread_n_blocks)); |
|
|
|
int c_gl_wr_end = c_gl_stride * prob_m; |
|
|
|
|
|
auto write = [&](int idx, float c0, float c1, FragS& s) { |
|
scalar_t2 res = |
|
Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1)); |
|
|
|
|
|
|
|
if constexpr (!has_act_order && group_blocks == -1 && |
|
w_type.size_bits() == 4 && |
|
(has_zp && dequant_skip_flop || !has_zp)) { |
|
res = __hmul2(res, s[0]); |
|
} |
|
|
|
if constexpr (w_type == vllm::kFE2M1f) { |
|
res = __hmul2(res, global_scale); |
|
} |
|
|
|
if constexpr (m_block_size_8) { |
|
((scalar_t*)sh_red)[idx] = res.x; |
|
((scalar_t*)sh_red)[idx + 8 * c_sh_stride] = res.y; |
|
} else { |
|
((scalar_t2*)sh_red)[idx] = res; |
|
} |
|
}; |
|
|
|
if (threadIdx.x / 32 < thread_n_blocks / 4) { |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) { |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
if constexpr (m_block_size_8) { |
|
int wr = c_sh_wr + 16 * j; |
|
write(wr, frag_c[i][j][0][0], frag_c[i][j][0][1], |
|
frag_s[j / 2][2 * (j % 2) + 0]); |
|
write(wr + 8, frag_c[i][j][0][2], frag_c[i][j][0][3], |
|
frag_s[j / 2][2 * (j % 2) + 1]); |
|
} else { |
|
int wr = c_sh_wr + 8 * j; |
|
write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0], |
|
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]); |
|
write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2], |
|
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]); |
|
write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0], |
|
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]); |
|
write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2], |
|
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]); |
|
} |
|
} |
|
c_sh_wr += 16 * (4 * c_sh_stride); |
|
} |
|
} |
|
__syncthreads(); |
|
|
|
#pragma unroll |
|
for (int i = 0; |
|
i < div_ceil(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); |
|
i++) { |
|
if (c_gl_wr < c_gl_wr_end) { |
|
if (use_atomic_add && slice_count > 1) { |
|
scalar_t2* C_half2 = reinterpret_cast<scalar_t2*>(&C[c_gl_wr]); |
|
scalar_t2* sh_red_half2 = |
|
reinterpret_cast<scalar_t2*>(&sh_red[c_sh_rd]); |
|
#pragma unroll |
|
for (int a = 0; a < 4; a++) { |
|
atomicAdd(&C_half2[a], sh_red_half2[a]); |
|
} |
|
} else { |
|
C[c_gl_wr] = sh_red[c_sh_rd]; |
|
} |
|
c_gl_wr += c_gl_wr_delta; |
|
c_sh_rd += c_sh_rd_delta; |
|
} |
|
} |
|
__syncthreads(); |
|
}; |
|
|
|
|
|
auto start_pipes = [&]() { |
|
|
|
#pragma unroll |
|
for (int i = 0; i < stages - 1; i++) { |
|
if (has_act_order && i == 0) { |
|
int last_g_idx = slice_k_start + stages * tb_k * 2; |
|
if (last_g_idx >= prob_k) { |
|
last_g_idx = prob_k - 1; |
|
} |
|
fetch_act_order_scales_to_shared(true, g_idx[slice_k_start], |
|
g_idx[last_g_idx]); |
|
} |
|
|
|
if constexpr (has_zp && !is_zp_float && group_blocks == -1) { |
|
if (i == 0) { |
|
fetch_col_zp_to_shared(); |
|
if constexpr (!dequant_skip_flop) { |
|
fetch_col_scale_to_shared(); |
|
} |
|
} |
|
} |
|
fetch_to_shared(i, i, i < slice_iters); |
|
} |
|
|
|
zero_accums(); |
|
wait_for_stage(); |
|
init_same_group(0); |
|
fetch_to_registers(0, 0); |
|
fetch_scales_to_registers(0, 0); |
|
fetch_zp_to_registers(0, 0); |
|
a_gl_rd += a_gl_rd_delta_o * (stages - 1); |
|
if constexpr (has_act_order) { |
|
slice_k_start_shared_fetch += tb_k * (stages - 1); |
|
} |
|
}; |
|
if (slice_iters) { |
|
start_pipes(); |
|
} |
|
|
|
|
|
while (slice_iters) { |
|
|
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
for (int pipe = 0; pipe < stages;) { |
|
#pragma unroll |
|
for (int k = 0; k < b_sh_wr_iters; k++) { |
|
fetch_to_registers(k + 1, pipe % stages); |
|
fetch_scales_to_registers(k + 1, pipe); |
|
fetch_zp_to_registers(k + 1, pipe); |
|
if (k == b_sh_wr_iters - 2) { |
|
fetch_to_shared((pipe + stages - 1) % stages, pipe, |
|
slice_iters >= stages); |
|
pipe++; |
|
wait_for_stage(); |
|
init_same_group(pipe % stages); |
|
} |
|
matmul(k); |
|
} |
|
slice_iters--; |
|
if (slice_iters == 0) { |
|
break; |
|
} |
|
} |
|
|
|
a_gl_rd += a_gl_rd_delta_o * stages; |
|
|
|
if constexpr (has_act_order) { |
|
slice_k_start += tb_k * stages; |
|
|
|
if (slice_k_start < prob_k) { |
|
slice_k_start_shared_fetch += tb_k * stages; |
|
int first_group_id = g_idx[slice_k_start]; |
|
int last_g_idx = slice_k_start + stages * tb_k * 2; |
|
if (last_g_idx >= prob_k) { |
|
last_g_idx = prob_k - 1; |
|
} |
|
int last_group_id = g_idx[last_g_idx]; |
|
if (last_group_id >= sh_first_group_id + sh_num_groups) { |
|
fetch_act_order_scales_to_shared(false, first_group_id, |
|
last_group_id); |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
if (slice_iters == 0) { |
|
cp_async_wait<0>(); |
|
bool last = slice_idx == slice_count - 1; |
|
|
|
|
|
if constexpr (!has_act_order && group_blocks == -1 && |
|
(has_zp && dequant_skip_flop || !has_zp)) { |
|
if (w_type.size_bits() == 8 || (last || use_atomic_add)) { |
|
if (s_sh_wr_pred) { |
|
cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); |
|
} |
|
cp_async_fence(); |
|
} |
|
} |
|
|
|
thread_block_reduce(); |
|
if constexpr (!has_act_order && group_blocks == -1 && |
|
(has_zp && dequant_skip_flop || !has_zp)) { |
|
if (w_type.size_bits() == 8 || (last || use_atomic_add)) { |
|
cp_async_wait<0>(); |
|
__syncthreads(); |
|
if (threadIdx.x / 32 < thread_n_blocks / 4) { |
|
reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0]; |
|
reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4]; |
|
if constexpr (m_block_size_8) { |
|
int idx = (threadIdx.x / 4) % 2; |
|
scalar_t2* frag_s_half2 = reinterpret_cast<scalar_t2*>(frag_s); |
|
#pragma unroll |
|
for (int i = 0; i < 8; i++) { |
|
frag_s_half2[i] = Dtype::num2num2( |
|
reinterpret_cast<scalar_t*>(&frag_s_half2[i])[idx]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
if constexpr (!has_act_order && group_blocks == -1 && |
|
w_type.size_bits() == 8 && |
|
(has_zp && dequant_skip_flop || !has_zp)) { |
|
if (threadIdx.x / 32 < thread_n_blocks / 4) { |
|
#pragma unroll |
|
for (int i = 0; i < thread_m_blocks; i++) { |
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
scale_float<scalar_t>( |
|
reinterpret_cast<float*>(&frag_c[i][j][0][0]), |
|
frag_s[j / 2][2 * (j % 2) + 0]); |
|
scale_float<scalar_t>( |
|
reinterpret_cast<float*>(&frag_c[i][j][0][2]), |
|
frag_s[j / 2][2 * (j % 2) + (m_block_size_8 ? 1 : 0)]); |
|
|
|
if constexpr (!m_block_size_8) { |
|
scale_float<scalar_t>( |
|
reinterpret_cast<float*>(&frag_c[i][j][1][0]), |
|
frag_s[j / 2][2 * (j % 2) + 1]); |
|
scale_float<scalar_t>( |
|
reinterpret_cast<float*>(&frag_c[i][j][1][2]), |
|
frag_s[j / 2][2 * (j % 2) + 1]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (slice_count > 1 && !use_atomic_add) { |
|
|
|
barrier_acquire(&locks[locks_off], slice_idx); |
|
if (use_fp32_reduce) { |
|
global_reduce_fp32(slice_idx == 0, last); |
|
} else { |
|
global_reduce_fp16(slice_idx == 0, last); |
|
} |
|
barrier_release(&locks[locks_off], last); |
|
} |
|
if (use_atomic_add && slice_count > 1 && slice_idx != 0) |
|
wait_negative_and_add(&locks[locks_off]); |
|
if (last || use_atomic_add) |
|
|
|
write_result(); |
|
slice_row = 0; |
|
slice_col_par++; |
|
slice_col++; |
|
is_first_matmul_in_slice = true; |
|
init_slice(); |
|
|
|
if (slice_iters) { |
|
a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + |
|
(threadIdx.x % a_gl_rd_delta_o); |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) |
|
B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; |
|
if (slice_col == 0) { |
|
#pragma unroll |
|
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; |
|
} |
|
|
|
|
|
if constexpr (has_act_order) { |
|
slice_k_start = tb_k * slice_row; |
|
slice_k_finish = slice_k_start + tb_k * slice_iters; |
|
slice_k_start_shared_fetch = slice_k_start; |
|
slice_n_offset = act_s_col_tb_stride * slice_col; |
|
|
|
} else { |
|
s_gl_rd = s_sh_stride * slice_col + threadIdx.x; |
|
zp_gl_rd = zp_sh_stride * slice_col + threadIdx.x; |
|
} |
|
|
|
start_pipes(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|