quantization / attention /dtype_bfloat16.cuh
danieldk's picture
danieldk HF Staff
Sync to vLLM 20250627
8aa00a3
raw
history blame
12.3 kB
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
* and
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
#endif
#include <stdint.h>
namespace vllm {
// Define custom BF16 vector data types.
struct bf16_4_t {
__nv_bfloat162 x;
__nv_bfloat162 y;
};
struct bf16_8_t {
__nv_bfloat162 x;
__nv_bfloat162 y;
__nv_bfloat162 z;
__nv_bfloat162 w;
};
// BF16 vector types for Q, K, V.
template <>
struct Vec<__nv_bfloat16, 1> {
using Type = __nv_bfloat16;
};
template <>
struct Vec<__nv_bfloat16, 2> {
using Type = __nv_bfloat162;
};
template <>
struct Vec<__nv_bfloat16, 4> {
using Type = bf16_4_t;
};
template <>
struct Vec<__nv_bfloat16, 8> {
using Type = bf16_8_t;
};
// FP32 accumulator vector types corresponding to Vec.
template <>
struct FloatVec<__nv_bfloat16> {
using Type = float;
};
template <>
struct FloatVec<__nv_bfloat162> {
using Type = float2;
};
template <>
struct FloatVec<bf16_4_t> {
using Type = Float4_;
};
template <>
struct FloatVec<bf16_8_t> {
using Type = Float8_;
};
// Utility functions for type conversions.
inline __device__ float2 bf1622float2(const __nv_bfloat162 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __bfloat1622float2(val);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __bfloat162bfloat162(val);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
// Vector addition.
inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
#ifndef USE_ROCM
return a + b;
#else
return __hadd(a, b);
#endif
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hadd2(a, b);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b) {
bf16_4_t c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b) {
bf16_8_t c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
inline __device__ float2 add(__nv_bfloat162 a, float2 fb) {
float2 fa = bf1622float2(a);
return add(fa, fb);
}
inline __device__ Float4_ add(bf16_4_t a, Float4_ fb) {
Float4_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
return fc;
}
inline __device__ Float8_ add(bf16_8_t a, Float8_ fb) {
Float8_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
fc.z = add(a.z, fb.z);
fc.w = add(a.w, fb.w);
return fc;
}
// Vector multiplication.
template <>
inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hmul(a, b);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
template <>
inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hmul2(a, b);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
template <>
inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}
template <>
inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b) {
bf16_4_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
return c;
}
template <>
inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b) {
__nv_bfloat162 s = bf162bf162(a);
bf16_4_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
return c;
}
template <>
inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b) {
bf16_8_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
return c;
}
template <>
inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b) {
__nv_bfloat162 s = bf162bf162(a);
bf16_8_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z);
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w);
return c;
}
template <>
inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b) {
float fa = __bfloat162float(a);
float fb = __bfloat162float(b);
return fa * fb;
}
template <>
inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
float2 fa = bf1622float2(a);
float2 fb = bf1622float2(b);
return mul<float2, float2, float2>(fa, fb);
}
template <>
inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}
template <>
inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b) {
Float4_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
return fc;
}
template <>
inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b) {
__nv_bfloat162 s = bf162bf162(a);
Float4_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
return fc;
}
template <>
inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b) {
Float8_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
return fc;
}
template <>
inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b) {
__nv_bfloat162 s = bf162bf162(a);
Float8_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z);
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w);
return fc;
}
// Vector fused multiply-add.
inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b,
__nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hfma2(a, b, c);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b,
__nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hfma2(bf162bf162(a), b, c);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c) {
bf16_4_t d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c) {
__nv_bfloat162 s = bf162bf162(a);
bf16_4_t d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
return d;
}
inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c) {
bf16_8_t d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c) {
__nv_bfloat162 s = bf162bf162(a);
bf16_8_t d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
d.z = fma(s, b.z, c.z);
d.w = fma(s, b.w, c.w);
return d;
}
inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc) {
return __bfloat162float(a) * __bfloat162float(b) + fc;
}
inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc) {
float2 fa = bf1622float2(a);
float2 fb = bf1622float2(b);
return fma(fa, fb, fc);
}
inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc) {
return fma(bf162bf162(a), b, fc);
}
inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc) {
Float4_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
return fd;
}
inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc) {
__nv_bfloat162 s = bf162bf162(a);
Float4_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
return fd;
}
inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc) {
Float8_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
fd.z = fma(a.z, b.z, fc.z);
fd.w = fma(a.w, b.w, fc.w);
return fd;
}
inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc) {
__nv_bfloat162 s = bf162bf162(a);
Float8_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
fd.z = fma(s, b.z, fc.z);
fd.w = fma(s, b.w, fc.w);
return fd;
}
// Vector sum.
template <>
inline __device__ float sum(__nv_bfloat16 v) {
return __bfloat162float(v);
}
template <>
inline __device__ float sum(__nv_bfloat162 v) {
float2 vf = bf1622float2(v);
return vf.x + vf.y;
}
template <>
inline __device__ float sum(bf16_4_t v) {
return sum(v.x) + sum(v.y);
}
template <>
inline __device__ float sum(bf16_8_t v) {
return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w);
}
// From float32 to bfloat16.
inline __device__ void from_float(__nv_bfloat16& dst, float src) {
dst = __float2bfloat16(src);
}
inline __device__ void from_float(__nv_bfloat162& dst, float2 src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
dst = __float22bfloat162_rn(src);
#endif
}
inline __device__ void from_float(bf16_4_t& dst, Float4_ src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
dst.x = __float22bfloat162_rn(src.x);
dst.y = __float22bfloat162_rn(src.y);
#endif
}
inline __device__ void from_float(bf16_8_t& dst, Float8_ src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
dst.x = __float22bfloat162_rn(src.x);
dst.y = __float22bfloat162_rn(src.y);
dst.z = __float22bfloat162_rn(src.z);
dst.w = __float22bfloat162_rn(src.w);
#endif
}
// From bfloat16 to float32.
inline __device__ float to_float(__nv_bfloat16 u) {
return __bfloat162float(u);
}
// Zero-out a variable.
inline __device__ void zero(__nv_bfloat16& dst) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
// Same as CUDART_ZERO_BF16 introduced in CUDA 12.2.
dst = __ushort_as_bfloat16((unsigned short)0x0000U);
#endif
}
} // namespace vllm