File size: 42,956 Bytes
165b25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
/*
 * Modified by Neural Magic
 * Copyright (C) Marlin.2024 Elias Frantar
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <torch/all.h>

#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>

#include <iostream>

#include "common/base.h"

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
  #include "common/mem.h"
#endif

template <typename T>
inline std::string str(T x) {
  return std::to_string(x);
}

namespace marlin_dense {

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800

using I4 = Vec<int, 4>;
// Matrix fragments for tensor core instructions; their precise layout is
// documented here:
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type
using FragA = Vec<half2, 4>;
using FragB = Vec<half2, 2>;
using FragC = Vec<float, 4>;
using FragS = Vec<half2, 1>;  // quantization scales

// m16n8k16 tensor core mma instruction with fp16 inputs and fp32
// output/accumulation.
__device__ inline void mma(const FragA& a_frag, const FragB& frag_b,
                           FragC& frag_c) {
  const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag);
  const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
  float* c = reinterpret_cast<float*>(&frag_c);
  asm volatile(
      "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
      "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
      : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
      : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]),
        "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3]));
}

// Instruction for loading a full 16x16 matrix fragment of operand A from shared
// memory, directly in tensor core layout.
__device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) {
  uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a);
  uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
  asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n"
               : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3])
               : "r"(smem));
}

// Lookup-table based 3-input logical operation; explicitly used for
// dequantization as the compiler does not seem to automatically recognize it in
// all cases.
template <int lut>
__device__ inline int lop3(int a, int b, int c) {
  int res;
  asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
               : "=r"(res)
               : "r"(a), "r"(b), "r"(c), "n"(lut));
  return res;
}

// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
// values. We mostly follow the strategy in the link below, with some small
// changes:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
__device__ inline FragB dequant(int q) {
  const int LO = 0x000f000f;
  const int HI = 0x00f000f0;
  const int EX = 0x64006400;
  // Guarantee that the `(a & b) | c` operations are LOP3s.
  int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
  int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
  // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
  // directly into `SUB` and `ADD`.
  const int SUB = 0x64086408;
  const int MUL = 0x2c002c00;
  const int ADD = 0xd480d480;
  FragB frag_b;
  frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
                      *reinterpret_cast<const half2*>(&SUB));
  frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
                      *reinterpret_cast<const half2*>(&MUL),
                      *reinterpret_cast<const half2*>(&ADD));
  return frag_b;
}

// Multiply dequantized values by the corresponding quantization scale; used
// only for grouped quantization.
__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) {
  half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]);
  frag_b[0] = __hmul2(frag_b[0], s);
  frag_b[1] = __hmul2(frag_b[1], s);
}

template <const int threads,          // number of threads in a threadblock
          const int thread_m_blocks,  // number of 16x16 blocks in the m
                                      // dimension (batchsize) of the
                                      // threadblock
          const int thread_n_blocks,  // same for n dimension (output)
          const int thread_k_blocks,  // same for k dimension (reduction)
          const int stages,  // number of stages for the async global->shared
                             // fetch pipeline
          const int group_blocks = -1  // number of consecutive 16x16 blocks
                                       // with a separate quantization scale
          >
__global__ void Marlin(
    const int4* __restrict__ A,  // fp16 input matrix of shape mxk
    const int4* __restrict__ B,  // 4bit quantized weight matrix of shape kxn
    int4* __restrict__ C,        // fp16 output buffer of shape mxn
    const int4* __restrict__ s,  // fp16 quantization scales of shape
                                 // (k/groupsize)xn
    int prob_m,                  // batch dimension m
    int prob_n,                  // output dimension n
    int prob_k,                  // reduction dimension k
    int* locks  // extra global storage for barrier synchronization
) {
  // Each threadblock processes one "stripe" of the B matrix with (roughly) the
  // same size, which might involve multiple column "slices" (of width 16 *
  // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM
  // example:
  //   0 1 3
  //   0 2 3
  //   1 2 4
  // While this kind of partitioning makes things somewhat more complicated, it
  // ensures good utilization of all SMs for many kinds of shape and GPU
  // configurations, while requiring as few slow global cross-threadblock
  // reductions as possible.

  // For larger GEMMs we run multiple batchsize 64 versions in parallel for a
  // better partitioning with less reductions
  int parallel = 1;
  if (prob_m > 16 * thread_m_blocks) {
    parallel = prob_m / (16 * thread_m_blocks);
    prob_m = 16 * thread_m_blocks;
  }

  int k_tiles = prob_k / 16 / thread_k_blocks;
  int n_tiles = prob_n / 16 / thread_n_blocks;
  int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x);
  // Ensure that the number of tiles in each stripe is a multiple of the
  // groupsize; this avoids an annoying special case where a stripe starts in
  // the middle of group.
  if (group_blocks != -1)
    iters = (group_blocks / thread_k_blocks) *
            ceildiv(iters, (group_blocks / thread_k_blocks));

  int slice_row = (iters * blockIdx.x) % k_tiles;
  int slice_col_par = (iters * blockIdx.x) / k_tiles;
  int slice_col = slice_col_par;
  int slice_iters;  // number of threadblock tiles in the current slice
  int slice_count =
      0;          // total number of active threadblocks in the current slice
  int slice_idx;  // index of threadblock in current slice; numbered bottom to
                  // top

  // We can easily implement parallel problem execution by just remapping
  // indices and advancing global pointers
  if (slice_col_par >= n_tiles) {
    A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8;
    C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8;
    locks += (slice_col_par / n_tiles) * n_tiles;
    slice_col = slice_col_par % n_tiles;
  }

  // Compute all information about the current slice which is required for
  // synchronization.
  auto init_slice = [&]() {
    slice_iters =
        iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row);
    if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0;
    if (slice_iters == 0) return;
    if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row;
    slice_count = 1;
    slice_idx = 0;
    int col_first = iters * ceildiv(k_tiles * slice_col_par, iters);
    if (col_first <= k_tiles * (slice_col_par + 1)) {
      int col_off = col_first - k_tiles * slice_col_par;
      slice_count = ceildiv(k_tiles - col_off, iters);
      if (col_off > 0) slice_count++;
      int delta_first = iters * blockIdx.x - col_first;
      if (delta_first < 0 || (col_off == 0 && delta_first == 0))
        slice_idx = slice_count - 1;
      else {
        slice_idx = slice_count - 1 - delta_first / iters;
        if (col_off > 0) slice_idx--;
      }
    }
    if (slice_col == n_tiles) {
      A += 16 * thread_m_blocks * prob_k / 8;
      C += 16 * thread_m_blocks * prob_n / 8;
      locks += n_tiles;
      slice_col = 0;
    }
  };
  init_slice();

  int a_gl_stride = prob_k / 8;  // stride of the A matrix in global memory
  // We typically use `constexpr` to indicate that this value is a compile-time
  // constant
  constexpr int a_sh_stride =
      16 * thread_k_blocks / 8;  // stride of an A matrix tile in shared memory
  constexpr int a_gl_rd_delta_o =
      16 * thread_k_blocks /
      8;  // delta between subsequent A tiles in global memory
  int a_gl_rd_delta_i =
      a_gl_stride *
      (threads / a_gl_rd_delta_o);  // between subsequent accesses within a tile
  constexpr int a_sh_wr_delta =
      a_sh_stride *
      (threads / a_gl_rd_delta_o);  // between shared memory writes
  constexpr int a_sh_rd_delta_o =
      2 * ((threads / 32) /
           (thread_n_blocks / 4));  // between shared memory tile reads
  constexpr int a_sh_rd_delta_i =
      a_sh_stride * 16;  // within a shared memory tile
  constexpr int a_sh_stage =
      a_sh_stride * (16 * thread_m_blocks);  // overall size of a tile
  constexpr int a_sh_wr_iters =
      ceildiv(a_sh_stage,
              a_sh_wr_delta);  // number of shared write iterations for a tile

  int b_gl_stride = 16 * prob_n / 32;
  constexpr int b_sh_stride = 32 * thread_n_blocks / 4;
  int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
  int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride);
  constexpr int b_sh_wr_delta = threads;
  constexpr int b_sh_rd_delta = threads;
  constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
  constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;

  int s_gl_stride = prob_n / 8;
  constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
  constexpr int s_sh_stage = s_sh_stride;
  int s_gl_rd_delta = s_gl_stride;

  // Global A read index of current thread.
  int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
                (threadIdx.x % a_gl_rd_delta_o);
  a_gl_rd += a_gl_rd_delta_o * slice_row;
  // Shared write index of current thread.
  int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
                (threadIdx.x % a_gl_rd_delta_o);
  // Shared read index.
  int a_sh_rd =
      a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16;
  a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4));

  int b_gl_rd =
      b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride);
  b_gl_rd += b_sh_stride * slice_col;
  b_gl_rd += b_gl_rd_delta_o * slice_row;
  int b_sh_wr = threadIdx.x;
  int b_sh_rd = threadIdx.x;

  int s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
                s_sh_stride * slice_col + threadIdx.x;
  int s_sh_wr = threadIdx.x;
  int s_sh_rd;
  // We use a different scale layout for grouped and column-wise quantization as
  // we scale a `half2` tile in column-major layout in the former and in
  // row-major in the latter case.
  if (group_blocks != -1)
    s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
              (threadIdx.x % 32) / 4;
  else
    s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
              (threadIdx.x % 32) % 4;

  // Precompute which thread should not read memory in which iterations; this is
  // needed if there are more threads than required for a certain tilesize or
  // when the batchsize is not a multiple of 16.
  bool a_sh_wr_pred[a_sh_wr_iters];
  #pragma unroll
  for (int i = 0; i < a_sh_wr_iters; i++)
    a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m;
  bool s_sh_wr_pred = threadIdx.x < s_sh_stride;

  // To ensure that writing and reading A tiles to/from shared memory, the
  // latter in fragment format, is fully bank conflict free, we need to use a
  // rather fancy XOR-based layout. The key here is that neither reads nor
  // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the
  // same shared memory banks. Further, it seems (based on NSight-Compute) that
  // each warp must also write a consecutive memory segment?
  auto transform_a = [&](int i) {
    int row = i / a_gl_rd_delta_o;
    return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
  };
  // Since the computation of this remapping is non-trivial and, due to our main
  // loop unrolls, all shared memory accesses are static, we simply precompute
  // both transformed reads and writes.
  int a_sh_wr_trans[a_sh_wr_iters];
  #pragma unroll
  for (int i = 0; i < a_sh_wr_iters; i++)
    a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr);
  int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks];
  #pragma unroll
  for (int i = 0; i < b_sh_wr_iters; i++) {
  #pragma unroll
    for (int j = 0; j < thread_m_blocks; j++)
      a_sh_rd_trans[i][j] =
          transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd);
  }

  // Since B-accesses have non-constant stride they have to be computed at
  // runtime; we break dependencies between subsequent accesses with a tile by
  // maintining multiple pointers (we have enough registers), a tiny
  // optimization.
  const int4* B_ptr[b_sh_wr_iters];
  #pragma unroll
  for (int i = 0; i < b_sh_wr_iters; i++)
    B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;

  extern __shared__ int4 sh[];
  // Shared memory storage for global fetch pipelines.
  int4* sh_a = sh;
  int4* sh_b = sh_a + (stages * a_sh_stage);
  int4* sh_s = sh_b + (stages * b_sh_stage);
  // Register storage for double buffer of shared memory reads.
  FragA frag_a[2][thread_m_blocks];
  I4 frag_b_quant[2];
  FragC frag_c[thread_m_blocks][4][2];
  FragS frag_s[2][4];

  // Zero accumulators.
  auto zero_accums = [&]() {
  #pragma unroll
    for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++)
      reinterpret_cast<float*>(frag_c)[i] = 0;
  };

  // Asynchronously fetch the next A, B and s tile from global to the next
  // shared memory pipeline location.
  auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
    if (pred) {
      int4* sh_a_stage = sh_a + a_sh_stage * pipe;
  #pragma unroll
      for (int i = 0; i < a_sh_wr_iters; i++) {
        cp_async4_pred(
            &sh_a_stage[a_sh_wr_trans[i]],
            &A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off],
            a_sh_wr_pred[i]);
      }
      int4* sh_b_stage = sh_b + b_sh_stage * pipe;
  #pragma unroll
      for (int i = 0; i < b_sh_wr_iters; i++) {
        cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
        B_ptr[i] += b_gl_rd_delta_o;
      }
      // Only fetch scales if this tile starts a new group
      if constexpr (group_blocks != -1) {
        // This assumes group_blocks >= thread_k_blocks
        // and would need to be modified to support smaller groups.
        static_assert(group_blocks >= thread_k_blocks);
        if (pipe % (group_blocks / thread_k_blocks) == 0) {
          int4* sh_s_stage = sh_s + s_sh_stage * pipe;
          if (s_sh_wr_pred) cp_async4(&sh_s_stage[s_sh_wr], &s[s_gl_rd]);
          s_gl_rd += s_gl_rd_delta;
        }
      }
    }
    // Insert a fence even when we are winding down the pipeline to ensure that
    // waiting is also correct at this point.
    cp_async_fence();
  };

  // Wait until the next thread tile has been loaded to shared memory.
  auto wait_for_stage = [&]() {
    // We only have `stages - 2` active fetches since we are double buffering
    // and can only issue the next fetch when it is guaranteed that the previous
    // shared memory load is fully complete (as it may otherwise be
    // overwritten).
    cp_async_wait<stages - 2>();
    __syncthreads();
  };

  // Load the next sub-tile from the current location in the shared memory pipe
  // into the current register buffer.
  auto fetch_to_registers = [&](int k, int pipe) {
    // It may seem inefficient that we reload the groups for every sub-tile;
    // however, this does not seem to be a significant bottleneck, while some
    // theoretically better attempts have lead to bad instruction ordering by
    // the compiler and correspondingly a noticeable drop in performance.
    if constexpr (group_blocks != -1) {
      // This assumes group_blocks >= thread_k_blocks
      // and would need to be modified to support smaller groups.
      static_assert(group_blocks >= thread_k_blocks);
      int4* sh_s_stage =
          sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) *
                               (pipe / (group_blocks / thread_k_blocks)));
      reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
    }
    int4* sh_a_stage = sh_a + a_sh_stage * pipe;
  #pragma unroll
    for (int i = 0; i < thread_m_blocks; i++)
      ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]);
    int4* sh_b_stage = sh_b + b_sh_stage * pipe;
    frag_b_quant[k % 2] = *reinterpret_cast<I4*>(
        &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]);
  };

  // Execute the actual tensor core matmul of a sub-tile.
  auto matmul = [&](int k) {
  // We have the m dimension as the inner loop in order to encourage overlapping
  // dequantization and matmul operations.
  #pragma unroll
    for (int j = 0; j < 4; j++) {
      int b_quant = frag_b_quant[k % 2][j];
      int b_quant_shift = b_quant >> 8;
      FragB frag_b0 = dequant(b_quant);
      // If there are no groups, we can just scale the final output once and can
      // avoid doing so for each weight.
      if (group_blocks != -1) scale(frag_b0, frag_s[k % 2][j], 0);
      FragB frag_b1 = dequant(b_quant_shift);
      if (group_blocks != -1) scale(frag_b1, frag_s[k % 2][j], 1);
  #pragma unroll
      for (int i = 0; i < thread_m_blocks; i++) {
        mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]);
        mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]);
      }
    }
  };

  // Since we slice across the k dimension of a tile in order to increase the
  // number of warps while keeping the n dimension of a tile reasonable, we have
  // multiple warps that accumulate their partial sums of the same output
  // location; which we have to reduce over in the end. We do in shared memory.
  auto thread_block_reduce = [&]() {
    constexpr int red_off = threads / b_sh_stride / 2;
    if (red_off >= 1) {
      int red_idx = threadIdx.x / b_sh_stride;
      constexpr int red_sh_stride = b_sh_stride * 4 * 2;
      constexpr int red_sh_delta = b_sh_stride;
      int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) +
                      (threadIdx.x % b_sh_stride);

      // Parallel logarithmic shared memory reduction. We make sure to avoid any
      // unnecessary read or write iterations, e.g., for two warps we write only
      // once by warp 1 and read only once by warp 0.

  #pragma unroll
      for (int m_block = 0; m_block < thread_m_blocks; m_block++) {
  #pragma unroll
        for (int i = red_off; i > 0; i /= 2) {
          if (i <= red_idx && red_idx < 2 * i) {
  #pragma unroll
            for (int j = 0; j < 4 * 2; j++) {
              int red_sh_wr =
                  red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
              if (i < red_off) {
                float* c_rd =
                    reinterpret_cast<float*>(&sh[red_sh_delta * j + red_sh_rd]);
                float* c_wr = reinterpret_cast<float*>(&sh[red_sh_wr]);
  #pragma unroll
                for (int k = 0; k < 4; k++)
                  reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] +=
                      c_rd[k] + c_wr[k];
              }
              sh[red_sh_wr] =
                  reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j];
            }
          }
          __syncthreads();
        }
        if (red_idx == 0) {
  #pragma unroll
          for (int i = 0; i < 4 * 2; i++) {
            float* c_rd =
                reinterpret_cast<float*>(&sh[red_sh_delta * i + red_sh_rd]);
  #pragma unroll
            for (int j = 0; j < 4; j++)
              reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] +=
                  c_rd[j];
          }
        }
        __syncthreads();
      }
    }
  };

  // Since multiple threadblocks may process parts of the same column slice, we
  // finally have to globally reduce over the results. As the striped
  // partitioning minimizes the number of such reductions and our outputs are
  // usually rather small, we perform this reduction serially in L2 cache.
  auto global_reduce = [&](bool first = false, bool last = false) {
    // We are very careful here to reduce directly in the output buffer to
    // maximize L2 cache utilization in this step. To do this, we write out
    // results in FP16 (but still reduce with FP32 compute).
    constexpr int active_threads = 32 * thread_n_blocks / 4;
    if (threadIdx.x < active_threads) {
      int c_gl_stride = prob_n / 8;
      int c_gl_wr_delta_o = 8 * c_gl_stride;
      int c_gl_wr_delta_i = 4 * (active_threads / 32);
      int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) +
                    4 * (threadIdx.x / 32) + threadIdx.x % 4;
      c_gl_wr += (2 * thread_n_blocks) * slice_col;
      constexpr int c_sh_wr_delta = active_threads;
      int c_sh_wr = threadIdx.x;

      int row = (threadIdx.x % 32) / 4;

      if (!first) {
  // Interestingly, doing direct global accesses here really seems to mess up
  // the compiler and lead to slowdowns, hence we also use async-copies even
  // though these fetches are not actually asynchronous.
  #pragma unroll
        for (int i = 0; i < thread_m_blocks * 4; i++) {
          cp_async4_pred(
              &sh[c_sh_wr + c_sh_wr_delta * i],
              &C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
                 c_gl_wr_delta_i * (i % 2)],
              i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m);
        }
        cp_async_fence();
        cp_async_wait<0>();
      }

  #pragma unroll
      for (int i = 0; i < thread_m_blocks * 4; i++) {
        if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) {
          if (!first) {
            int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta];
  #pragma unroll
            for (int j = 0; j < 2 * 4; j++) {
              reinterpret_cast<float*>(
                  &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] +=
                  __half2float(reinterpret_cast<__half*>(&c_red)[j]);
            }
          }
          if (!last) {
            int4 c;
  #pragma unroll
            for (int j = 0; j < 2 * 4; j++) {
              reinterpret_cast<__half*>(&c)[j] =
                  __float2half(reinterpret_cast<float*>(
                      &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]);
            }
            C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] =
                c;
          }
        }
      }
    }
  };

  // Write out the reduce final result in the correct layout. We only actually
  // reshuffle matrix fragments in this step, the reduction above is performed
  // in fragment layout.
  auto write_result = [&]() {
    int c_gl_stride = prob_n / 8;
    constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
    int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
    constexpr int c_sh_rd_delta =
        c_sh_stride * (threads / (2 * thread_n_blocks));

    int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) +
                  (threadIdx.x % (2 * thread_n_blocks));
    c_gl_wr += (2 * thread_n_blocks) * slice_col;
    int c_sh_wr =
        (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4;
    c_sh_wr += 32 * (threadIdx.x / 32);
    int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) +
                  (threadIdx.x % (2 * thread_n_blocks));

    int c_gl_wr_end = c_gl_stride * prob_m;

    // We first reorder in shared memory to guarantee the most efficient final
    // global write patterns
    auto write = [&](int idx, float c0, float c1, FragS& s) {
      half2 res = __halves2half2(__float2half(c0), __float2half(c1));
      if (group_blocks ==
          -1)  // for per-column quantization we finally apply the scale here
        res = __hmul2(res, s[0]);
      ((half2*)sh)[idx] = res;
    };
    if (threadIdx.x / 32 < thread_n_blocks / 4) {
  #pragma unroll
      for (int i = 0; i < thread_m_blocks; i++) {
  #pragma unroll
        for (int j = 0; j < 4; j++) {
          int wr = c_sh_wr + 8 * j;
          write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
                frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
          write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
                frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
          write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
                frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
          write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
                frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
        }
        c_sh_wr += 16 * (4 * c_sh_stride);
      }
    }
    __syncthreads();

  #pragma unroll
    for (int i = 0;
         i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
         i++) {
      if (c_gl_wr < c_gl_wr_end) {
        C[c_gl_wr] = sh[c_sh_rd];
        c_gl_wr += c_gl_wr_delta;
        c_sh_rd += c_sh_rd_delta;
      }
    }
  };

  // Start global fetch and register load pipelines.
  auto start_pipes = [&]() {
  #pragma unroll
    for (int i = 0; i < stages - 1; i++) fetch_to_shared(i, i, i < slice_iters);
    zero_accums();
    wait_for_stage();
    fetch_to_registers(0, 0);
    a_gl_rd += a_gl_rd_delta_o * (stages - 1);
  };
  start_pipes();

  // Main loop.
  while (slice_iters) {
  // We unroll over both the global fetch and the register load pipeline to
  // ensure all shared memory accesses are static. Note that both pipelines have
  // even length meaning that the next iteration will always start at index 0.
  #pragma unroll
    for (int pipe = 0; pipe < stages;) {
  #pragma unroll
      for (int k = 0; k < b_sh_wr_iters; k++) {
        fetch_to_registers(k + 1, pipe % stages);
        if (k == b_sh_wr_iters - 2) {
          fetch_to_shared((pipe + stages - 1) % stages, pipe,
                          slice_iters >= stages);
          pipe++;
          wait_for_stage();
        }
        matmul(k);
      }
      slice_iters--;
      if (slice_iters == 0) break;
    }
    a_gl_rd += a_gl_rd_delta_o * stages;

    // Process results and, if necessary, proceed to the next column slice.
    // While this pattern may not be the most readable, other ways of writing
    // the loop seemed to noticeably worse performance after compilation.
    if (slice_iters == 0) {
      cp_async_wait<0>();
      bool last = slice_idx == slice_count - 1;
      // For per-column scales, we only fetch them here in the final step before
      // write-out
      if (group_blocks == -1 && last) {
        if (s_sh_wr_pred) cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]);
        cp_async_fence();
      }
      thread_block_reduce();
      if (group_blocks == -1 && last) {
        cp_async_wait<0>();
        __syncthreads();
        if (threadIdx.x / 32 < thread_n_blocks / 4) {
          reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0];
          reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4];
        }
      }
      if (slice_count > 1) {  // only globally reduce if there is more than one
                              // block in a slice
        barrier_acquire(&locks[slice_col], slice_idx);
        global_reduce(slice_idx == 0, last);
        barrier_release(&locks[slice_col], last);
      }
      if (last)  // only the last block in a slice actually writes the result
        write_result();
      slice_row = 0;
      slice_col_par++;
      slice_col++;
      init_slice();
      if (slice_iters) {
        a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
                  (threadIdx.x % a_gl_rd_delta_o);
  #pragma unroll
        for (int i = 0; i < b_sh_wr_iters; i++)
          B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
        if (slice_col == 0) {
  #pragma unroll
          for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
        }
        s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
        start_pipes();
      }
    }
  }
}

#else

template <const int threads,          // number of threads in a threadblock
          const int thread_m_blocks,  // number of 16x16 blocks in the m
                                      // dimension (batchsize) of the
                                      // threadblock
          const int thread_n_blocks,  // same for n dimension (output)
          const int thread_k_blocks,  // same for k dimension (reduction)
          const int stages,  // number of stages for the async global->shared
                             // fetch pipeline
          const int group_blocks = -1  // number of consecutive 16x16 blocks
                                       // with a separate quantization scale
          >
__global__ void Marlin(
    const int4* __restrict__ A,  // fp16 input matrix of shape mxk
    const int4* __restrict__ B,  // 4bit quantized weight matrix of shape kxn
    int4* __restrict__ C,        // fp16 output buffer of shape mxn
    const int4* __restrict__ s,  // fp16 quantization scales of shape
                                 // (k/groupsize)xn
    int prob_m,                  // batch dimension m
    int prob_n,                  // output dimension n
    int prob_k,                  // reduction dimension k
    int* locks  // extra global storage for barrier synchronization
) {
  // Marlin is not implemented yet for SM < 8.0
  assert(false);
  return;
}

#endif

// 8 warps are a good choice since every SM has 4 schedulers and having more
// than 1 warp per schedule allows some more latency hiding. At the same time,
// we want relatively few warps to have many registers per warp and small tiles.
const int USER_THREADS =
    256;               // Note: This is only used with user-provided thread_k/n
const int STAGES = 4;  // 4 pipeline stages fit into shared memory
const int SHARED_MEM =
    96 * 1024;  // max shared memory on compute capability 8.6 (< 8.0)

static constexpr int min_thread_n = 64;
static constexpr int min_thread_k = 64;

static constexpr int tile_size = 16;
static constexpr int max_par = 16;

static constexpr int pack_factor_4bit =
    8;  // We have 8 4-bit vals inside a 32 bit

#define __CALL_IF(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS,           \
                  GROUP_BLOCKS, NUM_THREADS)                                   \
  else if (thread_m_blocks == THREAD_M_BLOCKS &&                               \
           thread_n_blocks == THREAD_N_BLOCKS &&                               \
           thread_k_blocks == THREAD_K_BLOCKS &&                               \
           group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) {       \
    cudaFuncSetAttribute(Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
                                THREAD_K_BLOCKS, STAGES, GROUP_BLOCKS>,        \
                         cudaFuncAttributeMaxDynamicSharedMemorySize,          \
                         SHARED_MEM);                                          \
    Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS,     \
           STAGES, GROUP_BLOCKS><<<blocks, NUM_THREADS, SHARED_MEM, stream>>>( \
        A_ptr, B_ptr, C_ptr, s_ptr, prob_m, prob_n, prob_k, locks);            \
  }

typedef struct {
  int thread_k;
  int thread_n;
  int num_threads;
} thread_config_t;

thread_config_t small_batch_thread_configs[] = {
    // Ordered by priority

    // thread_k, thread_n, num_threads
    {128, 128, 256},  // Default
    {128, 64, 128},   // Reduce N 2X, same K
    {64, 256, 256},   // Reduce K 2X, increase N 2X
    {64, 128, 128},   // Reduce K 2X, same N
};

thread_config_t large_batch_thread_configs[] = {
    // Ordered by priority

    // thread_k, thread_n, num_threads
    {64, 256, 256},   // Default
    {128, 128, 256},  // Reduce N 2X, increase K 2X
    {64, 128, 128},   // Reduce N 2X, same K
    {128, 64, 128},   // Reduce N 4X, increase K 2X
};

bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n,
                     int prob_k) {
  // Sanity
  if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
      th_config.num_threads == -1) {
    return false;
  }

  // Verify K/N are divisible by thread K/N
  if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
    return false;
  }

  // thread_k can be only 128 or 64 (because it must be less than groupsize
  // which is 128)
  if (th_config.thread_k != 128 && th_config.thread_k != 64) {
    return false;
  }

  // Verify min for thread K/N
  if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
    return false;
  }

  // num_threads must be at least 128 (= 4 warps)
  if (th_config.num_threads < 128) {
    return false;
  }

  return true;
}

thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) {
  if (prob_m <= 16) {
    for (auto th_config : small_batch_thread_configs) {
      if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
        return th_config;
      }
    }

  } else {
    for (auto th_config : large_batch_thread_configs) {
      if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
        return th_config;
      }
    }
  }

  return thread_config_t{-1, -1, -1};
}

#define CALL_IF(N_BLOCKS, K_BLOCKS, NUM_THREADS)    \
  __CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
  __CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS)  \
  __CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
  __CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS)  \
  __CALL_IF(2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
  __CALL_IF(2, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS)  \
  __CALL_IF(3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
  __CALL_IF(3, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS)  \
  __CALL_IF(4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
  __CALL_IF(4, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS)

void marlin_cuda(const void* A, const void* B, void* C, void* s, int prob_m,
                 int prob_n, int prob_k, void* workspace, int groupsize = -1,
                 int dev = 0, cudaStream_t stream = 0, int thread_k = -1,
                 int thread_n = -1, int sms = -1, int max_par = 16) {
  int tot_m = prob_m;
  int tot_m_blocks = ceildiv(tot_m, 16);
  int pad = 16 * tot_m_blocks - tot_m;

  if (sms == -1)
    cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);

  // Set thread config
  thread_config_t th_config;
  if (thread_k != -1 && thread_n != -1) {
    // User-defined config
    th_config = thread_config_t{thread_k, thread_n, USER_THREADS};
  } else {
    // Auto config
    th_config = determine_thread_config(prob_m, prob_n, prob_k);
  }

  if (!is_valid_config(th_config, prob_m, prob_n, prob_k)) {
    throw std::runtime_error(
        "Invalid thread config: thread_k = " + str(th_config.thread_k) +
        ", thread_n = " + str(th_config.thread_n) +
        ", num_threads = " + str(th_config.num_threads) + " for MKN = [" +
        str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]");
  }

  // Uncomment for debug
  // std::cout << "Using thread_config: thread_k = " + str(th_config.thread_k) +
  //                  ", thread_n = " + str(th_config.thread_n) +
  //                  ", num_threads = " + str(th_config.num_threads) + " for
  //                  MKN = [" + str(prob_m) +
  //                  ", " + str(prob_k) + ", " + str(prob_n) + "]\n";

  int num_threads = th_config.num_threads;
  thread_k = th_config.thread_k;
  thread_n = th_config.thread_n;

  int thread_k_blocks = thread_k / 16;
  int thread_n_blocks = thread_n / 16;
  int group_blocks = (groupsize == -1) ? -1 : groupsize / 16;
  int blocks = sms;

  if (prob_m == 0 || prob_n == 0 || prob_k == 0) {
    return;
  }

  TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
              " is not divisible by thread_n = ", thread_n);
  TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
              " is not divisible by thread_k = ", thread_k);
  if (group_blocks != -1) {
    TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
                " is not divisible by group_blocks = ", group_blocks);
  }

  const int4* A_ptr = (const int4*)A;
  const int4* B_ptr = (const int4*)B;
  int4* C_ptr = (int4*)C;
  const int4* s_ptr = (const int4*)s;

  int* locks = (int*)workspace;

  for (int i = 0; i < tot_m_blocks; i += 4) {
    int thread_m_blocks = tot_m_blocks - i;
    prob_m = tot_m - 16 * i;
    int par = 1;
    if (thread_m_blocks > 4) {
      // Note that parallel > 1 currently only works for inputs without any
      // padding
      par = (16 * thread_m_blocks - pad) / 64;
      if (par > max_par) par = max_par;
      prob_m = 64 * par;
      i += 4 * (par - 1);
      thread_m_blocks = 4;
    }

    // For compilation speed, we only define the kernel configurations that have
    // seemed useful (in terms of performance) in our testing, however many more
    // are, in principle, possible.
    if (false) {
    }
    CALL_IF(8, 8, 256)
    CALL_IF(16, 4, 256)
    CALL_IF(8, 4, 128)
    CALL_IF(4, 8, 128)
    else {
      throw std::runtime_error("Unsupported shapes: MKN = [" + str(prob_m) +
                               ", " + str(prob_k) + ", " + str(prob_n) + "]" +
                               ", groupsize = " + str(groupsize) +
                               ", thread_m_blocks = " + str(thread_m_blocks) +
                               ", thread_n_blocks = " + str(thread_n_blocks) +
                               ", thread_k_blocks = " + str(thread_k_blocks));
    }

    A_ptr += 16 * thread_m_blocks * (prob_k / 8) * par;
    C_ptr += 16 * thread_m_blocks * (prob_n / 8) * par;
  }
}

}  // namespace marlin_dense

torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
                          torch::Tensor& b_scales, torch::Tensor& workspace,
                          int64_t size_m, int64_t size_n, int64_t size_k) {
  // Verify M
  TORCH_CHECK(size_m == a.size(0),
              "Shape mismatch: a.size(0) = " + str(a.size(0)) +
                  ", size_m = " + str(size_m));

  // Verify K
  TORCH_CHECK(size_k == a.size(1),
              "Shape mismatch: a.size(1) = " + str(a.size(1)) +
                  ", size_k = " + str(size_k));
  TORCH_CHECK(size_k % marlin_dense::tile_size == 0,
              "size_k = " + str(size_k) + " is not divisible by tile_size = " +
                  str(marlin_dense::tile_size));
  TORCH_CHECK((size_k / marlin_dense::tile_size) == b_q_weight.size(0),
              "Shape mismatch: b_q_weight.size(0) = " +
                  str(b_q_weight.size(0)) + ", size_k = " + str(size_k) +
                  ", tile_size = " + str(marlin_dense::tile_size));

  // Verify N
  TORCH_CHECK(b_scales.size(1) == size_n,
              "b_scales.size(1) = " + str(b_scales.size(1)) +
                  ", size_n = " + str(size_n));
  TORCH_CHECK(
      b_q_weight.size(1) % marlin_dense::tile_size == 0,
      "b_q_weight.size(1) = " + str(b_q_weight.size(1)) +
          " is not divisible by tile_size = " + str(marlin_dense::tile_size));

  int actual_size_n = (b_q_weight.size(1) / marlin_dense::tile_size) *
                      marlin_dense::pack_factor_4bit;
  TORCH_CHECK(
      size_n == actual_size_n,
      "size_n = " + str(size_n) + ", actual_size_n = " + str(actual_size_n));

  // Verify A device and strides
  TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
  TORCH_CHECK(a.is_contiguous(), "A is not contiguous");

  // Verify B device and strides
  TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
  TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");

  // Verify scales device and strides
  TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
  TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");

  // Alloc C matrix
  const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
  auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
  torch::Tensor c = torch::empty({size_m, size_n}, options);

  // thread_k: `k` size of a thread_tile in `weights` (can usually be left as
  // auto -1)
  int thread_k = -1;
  // thread_n: `n` size of a thread_tile in `weights` (can usually be left as
  // auto -1)
  int thread_n = -1;
  // sms: number of SMs to use for the kernel (can usually be left as auto -1)
  int sms = -1;

  // Detect groupsize
  if (b_scales.size(0) != 1) {
    TORCH_CHECK(size_k % b_scales.size(0) == 0,
                "size_k = " + str(size_k) +
                    ", is not divisible by b_scales.size(0) = " +
                    str(b_scales.size(0)));
  }
  int groupsize = b_scales.size(0) == 1 ? -1 : size_k / b_scales.size(0);

  // Verify groupsize
  TORCH_CHECK(groupsize == -1 || groupsize == 128,
              "Unexpected groupsize = " + str(groupsize));

  // Verify workspace size
  TORCH_CHECK(size_n % marlin_dense::min_thread_n == 0,
              "size_n = " + str(size_n) +
                  ", is not divisible by min_thread_n = " +
                  str(marlin_dense::min_thread_n));
  int min_workspace_size =
      (size_n / marlin_dense::min_thread_n) * marlin_dense::max_par;
  TORCH_CHECK(workspace.numel() >= min_workspace_size,
              "workspace.numel = " + str(workspace.numel()) +
                  " is below min_workspace_size = " + str(min_workspace_size));

  int dev = a.get_device();
  marlin_dense::marlin_cuda(a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(),
                            b_scales.data_ptr(), size_m, size_n, size_k,
                            workspace.data_ptr(), groupsize, dev,
                            at::cuda::getCurrentCUDAStream(dev), thread_k,
                            thread_n, sms, marlin_dense::max_par);

  return c;
}