File size: 51,130 Bytes
5c6fb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
/*
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Adapted from https://github.com/IST-DASLab/marlin
*/
#include "../gptq_marlin/marlin.cuh"
#include "../gptq_marlin/marlin_dtypes.cuh"
using namespace marlin;
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
static_assert(std::is_same<scalar_t, half>::value || \
std::is_same<scalar_t, nv_bfloat16>::value, \
"only float16 and bfloat16 is supported");
template <typename T>
inline std::string str(T x) {
return std::to_string(x);
}
namespace fp8_marlin {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
template <typename scalar_t, // compute dtype, half or nv_float16
const int num_bits, // number of bits used for weights
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
const int thread_n_blocks, // same for n dimension (output)
const int thread_k_blocks, // same for k dimension (reduction)
const int stages, // number of stages for the async global->shared
// fetch pipeline
const int group_blocks = -1 // number of consecutive 16x16 blocks
// with a separate quantization scale
>
__global__ void Marlin(
const int4* __restrict__ A, // fp16 input matrix of shape mxk
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
int4* __restrict__ C, // fp16 output buffer of shape mxn
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
// (k/groupsize)xn
int num_groups, // number of scale groups per output channel
int prob_m, // batch dimension m
int prob_n, // output dimension n
int prob_k, // reduction dimension k
int* locks // extra global storage for barrier synchronization
) {}
} // namespace fp8_marlin
torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
torch::Tensor& b_scales, torch::Tensor& workspace,
int64_t num_bits, int64_t size_m, int64_t size_n,
int64_t size_k) {
TORCH_CHECK_NOT_IMPLEMENTED(false,
"marlin_gemm(..) requires CUDA_ARCH >= 8.0");
return torch::empty({1, 1});
}
#else
// m16n8k16 tensor core mma instruction with fp16 inputs and fp32
// output/accumulation.
template <typename scalar_t>
__device__ inline void mma(const typename ScalarType<scalar_t>::FragA& a_frag,
const typename ScalarType<scalar_t>::FragB& frag_b,
typename ScalarType<scalar_t>::FragC& frag_c) {
const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag);
const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
float* c = reinterpret_cast<float*>(&frag_c);
if constexpr (std::is_same<scalar_t, half>::value) {
asm volatile(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
"{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
: "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]),
"f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3]));
} else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) {
asm volatile(
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
"{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
: "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]),
"f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3]));
} else {
STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t);
}
}
// Instruction for loading a full 16x16 matrix fragment of operand A from shared
// memory, directly in tensor core layout.
template <typename scalar_t>
__device__ inline void ldsm4(typename ScalarType<scalar_t>::FragA& frag_a,
const void* smem_ptr) {
uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a);
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n"
: "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3])
: "r"(smem));
}
// Fast FP8ToFp16/FP8ToBf16: Efficiently dequantize 8bit fp8_e4m3 values to fp16
// bf16 Reference:
// - FP16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85
// - BF16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L125-L175
template <typename scalar_t>
__device__ inline typename ScalarType<scalar_t>::FragB dequant_8bit(int q) {
STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t);
}
template <>
__device__ inline typename ScalarType<half>::FragB dequant_8bit<half>(int q) {
// Constants for FP8 (E4M3) and FP16 formats
constexpr int FP8_EXPONENT = 4, FP8_MANTISSA = 3, FP16_EXPONENT = 5;
constexpr int RIGHT_SHIFT = FP16_EXPONENT - FP8_EXPONENT;
// Calculate MASK for extracting mantissa and exponent
constexpr int MASK1 = 0x80000000;
constexpr int MASK2 = MASK1 >> (FP8_EXPONENT + FP8_MANTISSA);
constexpr int MASK3 = MASK2 & 0x7fffffff;
constexpr int MASK = MASK3 | (MASK3 >> 16);
// Final MASK value: 0x7F007F00
// Extract and shift FP8 values to FP16 format
int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
int Out2 = ((q << 8) & 0x80008000) | (((q << 8) & MASK) >> RIGHT_SHIFT);
// Construct and apply exponent bias
constexpr int BIAS_OFFSET =
(1 << (FP16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1));
const half2 bias_reg = __float2half2_rn(float(1 << BIAS_OFFSET));
// Convert to half2 and apply bias
typename ScalarType<half>::FragB frag_b;
// Note: reverse indexing is intentional because weights are permuted
frag_b[1] = __hmul2(*reinterpret_cast<const half2*>(&Out1), bias_reg);
frag_b[0] = __hmul2(*reinterpret_cast<const half2*>(&Out2), bias_reg);
return frag_b;
}
template <>
__device__ inline typename ScalarType<nv_bfloat16>::FragB
dequant_8bit<nv_bfloat16>(int q) {
// Constants for FP8 (E4M3) and BF16 formats
constexpr int FP8_EXPONENT = 4, FP8_MANTISSA = 3, BF16_EXPONENT = 8;
constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP8_EXPONENT;
// Calculate MASK for extracting mantissa and exponent
constexpr int MASK1 = 0x80000000;
constexpr int MASK2 = MASK1 >> (FP8_EXPONENT + FP8_MANTISSA);
constexpr int MASK3 = MASK2 & 0x7fffffff;
constexpr int MASK = MASK3 | (MASK3 >> 16);
// Final MASK value: 0x7F007F00
// Extract and shift FP8 values to BF16 format
int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
int Out2 = ((q << 8) & 0x80008000) | (((q << 8) & MASK) >> RIGHT_SHIFT);
// Construct and apply exponent bias
constexpr int BIAS_OFFSET =
(1 << (BF16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1));
// Add 127 (float exponent bias) to BIAS_OFFSET and shift to float exponent
// position
constexpr uint32_t BIAS = (BIAS_OFFSET + 127) << 23;
const nv_bfloat162 bias_reg =
__float2bfloat162_rn(*reinterpret_cast<const float*>(&BIAS));
// Convert to bfloat162 and apply bias
typename ScalarType<nv_bfloat16>::FragB frag_b;
// Note: reverse indexing is intentional because weights are permuted
frag_b[1] = __hmul2(*reinterpret_cast<const nv_bfloat162*>(&Out1), bias_reg);
frag_b[0] = __hmul2(*reinterpret_cast<const nv_bfloat162*>(&Out2), bias_reg);
return frag_b;
}
// Multiply dequantized values by the corresponding quantization scale; used
// only for grouped quantization.
template <typename scalar_t>
__device__ inline void scale(typename ScalarType<scalar_t>::FragB& frag_b,
typename ScalarType<scalar_t>::FragS& frag_s,
int i) {
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2;
scalar_t2 s =
ScalarType<scalar_t>::num2num2(reinterpret_cast<scalar_t*>(&frag_s)[i]);
frag_b[0] = __hmul2(frag_b[0], s);
frag_b[1] = __hmul2(frag_b[1], s);
}
// Given 2 floats multiply by 2 scales (halves)
template <typename scalar_t>
__device__ inline void scale_float(float* c,
typename ScalarType<scalar_t>::FragS& s) {
scalar_t* s_ptr = reinterpret_cast<scalar_t*>(&s);
c[0] = __fmul_rn(c[0], ScalarType<scalar_t>::num2float(s_ptr[0]));
c[1] = __fmul_rn(c[1], ScalarType<scalar_t>::num2float(s_ptr[1]));
}
// Wait until barrier reaches `count`, then lock for current threadblock.
__device__ inline void barrier_acquire(int* lock, int count) {
if (threadIdx.x == 0) {
int state = -1;
do
// Guarantee that subsequent writes by this threadblock will be visible
// globally.
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
: "=r"(state)
: "l"(lock));
while (state != count);
}
__syncthreads();
}
// Release barrier and increment visitation count.
__device__ inline void barrier_release(int* lock, bool reset = false) {
__syncthreads();
if (threadIdx.x == 0) {
if (reset) {
lock[0] = 0;
return;
}
int val = 1;
// Make sure that all writes since acquiring this barrier are visible
// globally, while releasing the barrier.
asm volatile("fence.acq_rel.gpu;\n");
asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
:
: "l"(lock), "r"(val));
}
}
template <typename scalar_t, // compute dtype, half or nv_float16
const int num_bits, // number of bits used for weights
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
const int thread_n_blocks, // same for n dimension (output)
const int thread_k_blocks, // same for k dimension (reduction)
const int stages, // number of stages for the async global->shared
// fetch pipeline
const int group_blocks = -1 // number of consecutive 16x16 blocks
// with a separate quantization scale
>
__global__ void Marlin(
const int4* __restrict__ A, // fp16 input matrix of shape mxk
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
int4* __restrict__ C, // fp16 output buffer of shape mxn
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
// (k/groupsize)xn
int num_groups, // number of scale groups per output channel
int prob_m, // batch dimension m
int prob_n, // output dimension n
int prob_k, // reduction dimension k
int* locks // extra global storage for barrier synchronization
) {
// Each threadblock processes one "stripe" of the B matrix with (roughly) the
// same size, which might involve multiple column "slices" (of width 16 *
// `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM
// example:
// 0 1 3
// 0 2 3
// 1 2 4
// While this kind of partitioning makes things somewhat more complicated, it
// ensures good utilization of all SMs for many kinds of shape and GPU
// configurations, while requiring as few slow global cross-threadblock
// reductions as possible.
using Dtype = ScalarType<scalar_t>;
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2;
using FragA = typename ScalarType<scalar_t>::FragA;
using FragB = typename ScalarType<scalar_t>::FragB;
using FragC = typename ScalarType<scalar_t>::FragC;
using FragS = typename ScalarType<scalar_t>::FragS;
constexpr int pack_factor = 32 / num_bits;
// For larger GEMMs we run multiple batchsize 64 versions in parallel for a
// better partitioning with less reductions
int parallel = 1;
if (prob_m > 16 * thread_m_blocks) {
parallel = prob_m / (16 * thread_m_blocks);
prob_m = 16 * thread_m_blocks;
}
int k_tiles = prob_k / 16 / thread_k_blocks;
int n_tiles = prob_n / 16 / thread_n_blocks;
int iters = div_ceil(k_tiles * n_tiles * parallel, gridDim.x);
int slice_row = (iters * blockIdx.x) % k_tiles;
int slice_col_par = (iters * blockIdx.x) / k_tiles;
int slice_col = slice_col_par;
int slice_iters; // number of threadblock tiles in the current slice
int slice_count =
0; // total number of active threadblocks in the current slice
int slice_idx; // index of threadblock in current slice; numbered bottom to
// top
// We can easily implement parallel problem execution by just remapping
// indices and advancing global pointers
if (slice_col_par >= n_tiles) {
A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8;
C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8;
locks += (slice_col_par / n_tiles) * n_tiles;
slice_col = slice_col_par % n_tiles;
}
// Compute all information about the current slice which is required for
// synchronization.
auto init_slice = [&]() {
slice_iters =
iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row);
if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0;
if (slice_iters == 0) return;
if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row;
slice_count = 1;
slice_idx = 0;
int col_first = iters * div_ceil(k_tiles * slice_col_par, iters);
if (col_first <= k_tiles * (slice_col_par + 1)) {
int col_off = col_first - k_tiles * slice_col_par;
slice_count = div_ceil(k_tiles - col_off, iters);
if (col_off > 0) slice_count++;
int delta_first = iters * blockIdx.x - col_first;
if (delta_first < 0 || (col_off == 0 && delta_first == 0))
slice_idx = slice_count - 1;
else {
slice_idx = slice_count - 1 - delta_first / iters;
if (col_off > 0) slice_idx--;
}
}
if (slice_col == n_tiles) {
A += 16 * thread_m_blocks * prob_k / 8;
C += 16 * thread_m_blocks * prob_n / 8;
locks += n_tiles;
slice_col = 0;
}
};
init_slice();
// A sizes/strides
// stride of the A matrix in global memory
int a_gl_stride = prob_k / 8;
// stride of an A matrix tile in shared memory
constexpr int a_sh_stride = 16 * thread_k_blocks / 8;
// delta between subsequent A tiles in global memory
constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8;
// between subsequent accesses within a tile
int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o);
// between shared memory writes
constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o);
// between shared memory tile reads
constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4));
// within a shared memory tile
constexpr int a_sh_rd_delta_i = a_sh_stride * 16;
// overall size of a tile
constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks);
// number of shared write iterations for a tile
constexpr int a_sh_wr_iters = div_ceil(a_sh_stage, a_sh_wr_delta);
// B sizes/strides
int b_gl_stride = 16 * prob_n / (pack_factor * 4);
constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4;
constexpr int b_thread_vecs = num_bits == 4 ? 1 : 2;
constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs;
int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads);
constexpr int b_sh_wr_delta = threads * b_thread_vecs;
constexpr int b_sh_rd_delta = threads * b_thread_vecs;
constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;
// Scale sizes/strides without act_order
int s_gl_stride = prob_n / 8;
constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
// Scale size/strides with act_order
constexpr int tb_k = 16 * thread_k_blocks;
constexpr int g_idx_stage = 0;
// constexpr int act_s_row_stride = 1;
// int act_s_col_stride = act_s_row_stride * num_groups;
int act_s_col_stride = 1;
int act_s_col_warp_stride = act_s_col_stride * 8;
int tb_n_warps = thread_n_blocks / 4;
int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps;
// Global A read index of current thread.
int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
a_gl_rd += a_gl_rd_delta_o * slice_row;
// Shared write index of current thread.
int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
// Shared read index.
int a_sh_rd =
a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16;
a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4));
int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) +
(threadIdx.x % b_sh_stride_threads) * b_thread_vecs;
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x * b_thread_vecs;
int b_sh_rd = threadIdx.x * b_thread_vecs;
// For act_order
int slice_k_start = tb_k * slice_row;
int slice_k_start_shared_fetch = slice_k_start;
int slice_n_offset = act_s_col_tb_stride * slice_col;
// No act_order
int s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
int s_sh_wr = threadIdx.x;
bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
// We scale a `half2` tile in row-major layout for column-wise quantization.
int s_sh_rd =
8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) % 4;
// Precompute which thread should not read memory in which iterations; this is
// needed if there are more threads than required for a certain tilesize or
// when the batchsize is not a multiple of 16.
bool a_sh_wr_pred[a_sh_wr_iters];
#pragma unroll
for (int i = 0; i < a_sh_wr_iters; i++)
a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m;
// To ensure that writing and reading A tiles to/from shared memory, the
// latter in fragment format, is fully bank conflict free, we need to use a
// rather fancy XOR-based layout. The key here is that neither reads nor
// writes of the 16-byte `int4` blocks of 8 consecutive threads involve the
// same shared memory banks. Further, it seems (based on NSight-Compute) that
// each warp must also write a consecutive memory segment?
auto transform_a = [&](int i) {
int row = i / a_gl_rd_delta_o;
return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
};
// Since the computation of this remapping is non-trivial and, due to our main
// loop unrolls, all shared memory accesses are static, we simply precompute
// both transformed reads and writes.
int a_sh_wr_trans[a_sh_wr_iters];
#pragma unroll
for (int i = 0; i < a_sh_wr_iters; i++)
a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr);
int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks];
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
#pragma unroll
for (int j = 0; j < thread_m_blocks; j++)
a_sh_rd_trans[i][j] =
transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd);
}
// Since B-accesses have non-constant stride they have to be computed at
// runtime; we break dependencies between subsequent accesses with a tile by
// maintining multiple pointers (we have enough registers), a tiny
// optimization.
const int4* B_ptr[b_sh_wr_iters];
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++)
B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;
extern __shared__ int4 sh[];
// Shared memory storage for global fetch pipelines.
int4* sh_a = sh;
int4* sh_b = sh_a + (stages * a_sh_stage);
int4* sh_g_idx = sh_b + (stages * b_sh_stage);
int4* sh_s = sh_g_idx + (stages * g_idx_stage);
// Register storage for double buffer of shared memory reads.
FragA frag_a[2][thread_m_blocks];
I4 frag_b_quant[2][b_thread_vecs];
FragC frag_c[thread_m_blocks][4][2];
FragS frag_s[2][4];
// Zero accumulators.
auto zero_accums = [&]() {
#pragma unroll
for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++)
reinterpret_cast<float*>(frag_c)[i] = 0;
};
int sh_first_group_id = -1;
int sh_num_groups = -1;
constexpr int sh_max_num_groups = 32;
auto fetch_scales_to_shared = [&](bool is_async, int first_group_id,
int last_group_id) {
sh_first_group_id = first_group_id;
sh_num_groups = last_group_id - first_group_id + 1;
if (sh_num_groups < sh_max_num_groups) {
sh_num_groups = sh_max_num_groups;
}
if (sh_first_group_id + sh_num_groups > num_groups) {
sh_num_groups = num_groups - sh_first_group_id;
}
int row_offset = first_group_id * s_gl_stride;
if (is_async) {
for (int i = 0; i < sh_num_groups; i++) {
if (threadIdx.x < s_sh_stride) {
cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x],
&scales_ptr[row_offset + (i * s_gl_stride) +
slice_n_offset + threadIdx.x]);
}
}
} else {
for (int i = 0; i < sh_num_groups; i++) {
if (threadIdx.x < s_sh_stride) {
sh_s[(i * s_sh_stride) + threadIdx.x] =
scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset +
threadIdx.x];
}
}
}
};
// Asynchronously fetch the next A, B and s tile from global to the next
// shared memory pipeline location.
auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
if (pred) {
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < a_sh_wr_iters; i++) {
cp_async4_pred(
&sh_a_stage[a_sh_wr_trans[i]],
&A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off],
a_sh_wr_pred[i]);
}
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
#pragma unroll
for (int j = 0; j < b_thread_vecs; j++) {
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j);
}
B_ptr[i] += b_gl_rd_delta_o;
}
}
// Insert a fence even when we are winding down the pipeline to ensure that
// waiting is also correct at this point.
cp_async_fence();
};
// Wait until the next thread tile has been loaded to shared memory.
auto wait_for_stage = [&]() {
// We only have `stages - 2` active fetches since we are double buffering
// and can only issue the next fetch when it is guaranteed that the previous
// shared memory load is fully complete (as it may otherwise be
// overwritten).
cp_async_wait<stages - 2>();
__syncthreads();
};
// Load the next sub-tile from the current location in the shared memory pipe
// into the current register buffer.
auto fetch_to_registers = [&](int k, int pipe) {
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++)
ldsm4<scalar_t>(frag_a[k % 2][i],
&sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]);
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < b_thread_vecs; i++) {
frag_b_quant[k % 2][i] = *reinterpret_cast<I4*>(
&sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]);
}
};
bool is_same_group[stages];
int same_group_id[stages];
auto init_same_group = [&](int pipe) {
is_same_group[pipe] = false;
same_group_id[pipe] = 0;
return;
};
// Execute the actual tensor core matmul of a sub-tile.
auto matmul = [&](int k) {
// We have the m dimension as the inner loop in order to encourage overlapping
// dequantization and matmul operations.
#pragma unroll
for (int j = 0; j < 4; j++) {
FragB frag_b0;
FragB frag_b1;
int* frag_b_quant_ptr = reinterpret_cast<int*>(frag_b_quant[k % 2]);
int b_quant_0 = frag_b_quant_ptr[j * 2 + 0];
int b_quant_1 = frag_b_quant_ptr[j * 2 + 1];
frag_b0 = dequant_8bit<scalar_t>(b_quant_0);
frag_b1 = dequant_8bit<scalar_t>(b_quant_1);
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
mma<scalar_t>(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]);
mma<scalar_t>(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]);
}
}
};
// Since we slice across the k dimension of a tile in order to increase the
// number of warps while keeping the n dimension of a tile reasonable, we have
// multiple warps that accumulate their partial sums of the same output
// location; which we have to reduce over in the end. We do in shared memory.
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride_threads / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride_threads;
constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2;
constexpr int red_sh_delta = b_sh_stride_threads;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) +
(threadIdx.x % b_sh_stride_threads);
// Parallel logarithmic shared memory reduction. We make sure to avoid any
// unnecessary read or write iterations, e.g., for two warps we write only
// once by warp 1 and read only once by warp 0.
#pragma unroll
for (int m_block = 0; m_block < thread_m_blocks; m_block++) {
#pragma unroll
for (int i = red_off; i > 0; i /= 2) {
if (i <= red_idx && red_idx < 2 * i) {
#pragma unroll
for (int j = 0; j < 4 * 2; j++) {
int red_sh_wr =
red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
if (i < red_off) {
float* c_rd =
reinterpret_cast<float*>(&sh[red_sh_delta * j + red_sh_rd]);
float* c_wr = reinterpret_cast<float*>(&sh[red_sh_wr]);
#pragma unroll
for (int k = 0; k < 4; k++)
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] +=
c_rd[k] + c_wr[k];
}
sh[red_sh_wr] =
reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j];
}
}
__syncthreads();
}
if (red_idx == 0) {
#pragma unroll
for (int i = 0; i < 4 * 2; i++) {
float* c_rd =
reinterpret_cast<float*>(&sh[red_sh_delta * i + red_sh_rd]);
#pragma unroll
for (int j = 0; j < 4; j++)
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] +=
c_rd[j];
}
}
__syncthreads();
}
}
};
// Since multiple threadblocks may process parts of the same column slice, we
// finally have to globally reduce over the results. As the striped
// partitioning minimizes the number of such reductions and our outputs are
// usually rather small, we perform this reduction serially in L2 cache.
auto global_reduce = [&](bool first = false, bool last = false) {
// We are very careful here to reduce directly in the output buffer to
// maximize L2 cache utilization in this step. To do this, we write out
// results in FP16 (but still reduce with FP32 compute).
constexpr int active_threads = 32 * thread_n_blocks / 4;
if (threadIdx.x < active_threads) {
int c_gl_stride = prob_n / 8;
int c_gl_wr_delta_o = 8 * c_gl_stride;
int c_gl_wr_delta_i = 4 * (active_threads / 32);
int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) +
4 * (threadIdx.x / 32) + threadIdx.x % 4;
c_gl_wr += (2 * thread_n_blocks) * slice_col;
constexpr int c_sh_wr_delta = active_threads;
int c_sh_wr = threadIdx.x;
int row = (threadIdx.x % 32) / 4;
if (!first) {
// Interestingly, doing direct global accesses here really seems to mess up
// the compiler and lead to slowdowns, hence we also use async-copies even
// though these fetches are not actually asynchronous.
#pragma unroll
for (int i = 0; i < thread_m_blocks * 4; i++) {
cp_async4_pred(
&sh[c_sh_wr + c_sh_wr_delta * i],
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
c_gl_wr_delta_i * (i % 2)],
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m);
}
cp_async_fence();
cp_async_wait<0>();
}
#pragma unroll
for (int i = 0; i < thread_m_blocks * 4; i++) {
if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) {
if (!first) {
int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta];
#pragma unroll
for (int j = 0; j < 2 * 4; j++) {
reinterpret_cast<float*>(
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] +=
Dtype::num2float(reinterpret_cast<scalar_t*>(&c_red)[j]);
}
}
if (!last) {
int4 c;
#pragma unroll
for (int j = 0; j < 2 * 4; j++) {
reinterpret_cast<scalar_t*>(&c)[j] =
Dtype::float2num(reinterpret_cast<float*>(
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]);
}
C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] =
c;
}
}
}
}
};
// Write out the reduce final result in the correct layout. We only actually
// reshuffle matrix fragments in this step, the reduction above is performed
// in fragment layout.
auto write_result = [&]() {
int c_gl_stride = prob_n / 8;
constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
constexpr int c_sh_rd_delta =
c_sh_stride * (threads / (2 * thread_n_blocks));
int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) +
(threadIdx.x % (2 * thread_n_blocks));
c_gl_wr += (2 * thread_n_blocks) * slice_col;
int c_sh_wr =
(4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4;
c_sh_wr += 32 * (threadIdx.x / 32);
int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) +
(threadIdx.x % (2 * thread_n_blocks));
int c_gl_wr_end = c_gl_stride * prob_m;
// We first reorder in shared memory to guarantee the most efficient final
// global write patterns
auto write = [&](int idx, float c0, float c1, FragS& s) {
scalar_t2 res =
Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1));
((scalar_t2*)sh)[idx] = res;
};
if (threadIdx.x / 32 < thread_n_blocks / 4) {
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
int wr = c_sh_wr + 8 * j;
write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
}
c_sh_wr += 16 * (4 * c_sh_stride);
}
}
__syncthreads();
#pragma unroll
for (int i = 0;
i < div_ceil(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
i++) {
if (c_gl_wr < c_gl_wr_end) {
C[c_gl_wr] = sh[c_sh_rd];
c_gl_wr += c_gl_wr_delta;
c_sh_rd += c_sh_rd_delta;
}
}
};
// Start global fetch and register load pipelines.
auto start_pipes = [&]() {
#pragma unroll
for (int i = 0; i < stages - 1; i++) {
fetch_to_shared(i, i, i < slice_iters);
}
zero_accums();
wait_for_stage();
init_same_group(0);
fetch_to_registers(0, 0);
a_gl_rd += a_gl_rd_delta_o * (stages - 1);
slice_k_start_shared_fetch += tb_k * (stages - 1);
};
if (slice_iters) {
start_pipes();
}
// Main loop.
while (slice_iters) {
// We unroll over both the global fetch and the register load pipeline to
// ensure all shared memory accesses are static. Note that both pipelines
// have even length meaning that the next iteration will always start at
// index 0.
#pragma unroll
for (int pipe = 0; pipe < stages;) {
#pragma unroll
for (int k = 0; k < b_sh_wr_iters; k++) {
fetch_to_registers(k + 1, pipe % stages);
if (k == b_sh_wr_iters - 2) {
fetch_to_shared((pipe + stages - 1) % stages, pipe,
slice_iters >= stages);
pipe++;
wait_for_stage();
init_same_group(pipe % stages);
}
matmul(k);
}
slice_iters--;
if (slice_iters == 0) {
break;
}
}
a_gl_rd += a_gl_rd_delta_o * stages;
slice_k_start += tb_k * stages;
slice_k_start_shared_fetch += tb_k * stages;
// Process results and, if necessary, proceed to the next column slice.
// While this pattern may not be the most readable, other ways of writing
// the loop seemed to noticeably worse performance after compilation.
if (slice_iters == 0) {
cp_async_wait<0>();
bool last = slice_idx == slice_count - 1;
// For per-column scales, we only fetch them here in the final step before
// write-out
if (s_sh_wr_pred) {
cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]);
}
cp_async_fence();
thread_block_reduce();
cp_async_wait<0>();
__syncthreads();
if (threadIdx.x / 32 < thread_n_blocks / 4) {
reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0];
reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4];
}
// For 8-bit channelwise, we apply the scale before the global reduction
// that converts the fp32 results to fp16 (so that we avoid possible
// overflow in fp16)
if (threadIdx.x / 32 < thread_n_blocks / 4) {
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][0][0]),
frag_s[j / 2][2 * (j % 2) + 0]);
scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][0][2]),
frag_s[j / 2][2 * (j % 2) + 0]);
scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][1][0]),
frag_s[j / 2][2 * (j % 2) + 1]);
scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][1][2]),
frag_s[j / 2][2 * (j % 2) + 1]);
}
}
}
if (slice_count > 1) { // only globally reduce if there is more than one
// block in a slice
barrier_acquire(&locks[slice_col], slice_idx);
global_reduce(slice_idx == 0, last);
barrier_release(&locks[slice_col], last);
}
if (last) // only the last block in a slice actually writes the result
write_result();
slice_row = 0;
slice_col_par++;
slice_col++;
init_slice();
if (slice_iters) {
a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++)
B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
if (slice_col == 0) {
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
}
// Update slice k/n for scales loading
s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
start_pipes();
}
}
}
}
#define __CALL_IF(NUM_BITS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
THREAD_K_BLOCKS, GROUP_BLOCKS, NUM_THREADS) \
else if (num_bits == NUM_BITS && thread_m_blocks == THREAD_M_BLOCKS && \
thread_n_blocks == THREAD_N_BLOCKS && \
thread_k_blocks == THREAD_K_BLOCKS && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \
cudaFuncSetAttribute( \
Marlin<scalar_t, NUM_BITS, NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, pipe_stages, GROUP_BLOCKS>, \
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
Marlin<scalar_t, NUM_BITS, NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, pipe_stages, GROUP_BLOCKS> \
<<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
A_ptr, B_ptr, C_ptr, s_ptr, num_groups, prob_m, prob_n, prob_k, \
locks); \
}
typedef struct {
int thread_k;
int thread_n;
int num_threads;
} thread_config_t;
typedef struct {
int max_m_blocks;
thread_config_t tb_cfg;
} exec_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{128, 128, 256},
{64, 128, 128},
{128, 64, 128},
};
thread_config_t large_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{64, 256, 256},
{64, 128, 128},
{128, 64, 128},
};
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
int prob_n, int prob_k, int num_bits,
int group_size) {
int tb_n = th_config.thread_n;
// Get max scale groups per thread-block
// Fixed for channelwise
int tb_groups = 1;
int tb_scales = tb_groups * tb_n * 2;
return tb_scales * pipe_stages;
}
bool is_valid_cache_size(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int scales_cache_size, int max_shared_mem) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int b_size = (tb_k * tb_n / pack_factor) * 4;
// Get A size
int m_blocks = div_ceil(prob_m, 16);
int tb_max_m = 16;
while (true) {
if (m_blocks >= max_m_blocks) {
tb_max_m *= max_m_blocks;
break;
}
max_m_blocks--;
if (max_m_blocks == 0) {
TORCH_CHECK(false, "Unexpected m_blocks = ", m_blocks);
}
}
int a_size = (tb_max_m * tb_k) * 2;
float pipe_size = (a_size + b_size) * pipe_stages;
TORCH_CHECK(max_shared_mem / 2 > scales_cache_size); // Sanity
return pipe_size < 0.95f * (max_shared_mem - scales_cache_size);
}
bool is_valid_config(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
return false;
}
// Verify K/N are divisible by thread K/N
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
return false;
}
// Verify min for thread K/N
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
return false;
}
// num_threads must be at least 128 (= 4 warps)
if (th_config.num_threads < 128) {
return false;
}
// Determine cache for scales
int scales_cache_size = get_scales_cache_size(th_config, prob_m, prob_n,
prob_k, num_bits, group_size);
// Check that pipeline fits into cache
if (!is_valid_cache_size(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, scales_cache_size, max_shared_mem)) {
return false;
}
return true;
}
exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
int num_bits, int group_size,
int max_shared_mem) {
int max_m_blocks = 4;
while (max_m_blocks > 0) {
if (prob_m <= 16) {
for (auto th_config : small_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
} else {
for (auto th_config : large_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
}
max_m_blocks--; // Process less M blocks per invocation to reduce cache
// usage
}
return exec_config_t{0, {-1, -1, -1}};
}
#define CALL_IF(NUM_BITS, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS)
template <typename scalar_t>
void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s, int prob_m,
int prob_n, int prob_k, void* workspace, int num_bits,
int num_groups, int group_size, int dev,
cudaStream_t stream, int thread_k, int thread_n, int sms,
int max_par) {
TORCH_CHECK(num_bits == 8, "num_bits must be 8. Got = ", num_bits);
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
", ", prob_n, ", ", prob_k, "]");
int tot_m = prob_m;
int tot_m_blocks = div_ceil(tot_m, 16);
int pad = 16 * tot_m_blocks - tot_m;
if (sms == -1) {
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
// Set thread config
exec_config_t exec_cfg;
if (thread_k != -1 && thread_n != -1) {
// User-defined config
exec_cfg =
exec_config_t{4, thread_config_t{thread_k, thread_n, default_threads}};
} else {
// Auto config
exec_cfg = determine_thread_config(prob_m, prob_n, prob_k, num_bits,
group_size, max_shared_mem);
}
TORCH_CHECK(
exec_cfg.max_m_blocks > 0 &&
is_valid_config(exec_cfg.tb_cfg, exec_cfg.max_m_blocks, prob_m,
prob_n, prob_k, num_bits, group_size, max_shared_mem),
"Invalid thread config: max_m_blocks = ", exec_cfg.max_m_blocks,
", thread_k = ", exec_cfg.tb_cfg.thread_k,
", thread_n = ", exec_cfg.tb_cfg.thread_n,
", num_threads = ", exec_cfg.tb_cfg.num_threads, " for MKN = [", prob_m,
", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size, ", max_shared_mem = ", max_shared_mem);
int num_threads = exec_cfg.tb_cfg.num_threads;
thread_k = exec_cfg.tb_cfg.thread_k;
thread_n = exec_cfg.tb_cfg.thread_n;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
int blocks = sms;
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
" is not divisible by thread_n = ", thread_n);
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
" is not divisible by thread_k = ", thread_k);
int group_blocks = -1;
const int4* A_ptr = (const int4*)A;
const int4* B_ptr = (const int4*)B;
int4* C_ptr = (int4*)C;
const int4* s_ptr = (const int4*)s;
int* locks = (int*)workspace;
// Main loop
for (int i = 0; i < tot_m_blocks; i += exec_cfg.max_m_blocks) {
int thread_m_blocks = tot_m_blocks - i;
prob_m = tot_m - 16 * i;
int par = 1;
if (thread_m_blocks > exec_cfg.max_m_blocks) {
// Note that parallel > 1 currently only works for inputs without any
// padding
par = (16 * thread_m_blocks - pad) / (16 * exec_cfg.max_m_blocks);
if (par > max_par) par = max_par;
prob_m = (16 * exec_cfg.max_m_blocks) * par;
i += exec_cfg.max_m_blocks * (par - 1);
thread_m_blocks = exec_cfg.max_m_blocks;
}
// Define kernel configurations
if (false) {
}
CALL_IF(8, 32, 2, 256)
CALL_IF(8, 16, 4, 256)
CALL_IF(8, 8, 8, 256)
CALL_IF(8, 8, 4, 128)
CALL_IF(8, 4, 8, 128)
else {
TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " +
str(prob_n) + ", " + str(prob_k) + "]" +
", num_groups = " + str(num_groups) +
", group_size = " + str(group_size) +
", thread_m_blocks = " + str(thread_m_blocks) +
", thread_n_blocks = " + str(thread_n_blocks) +
", thread_k_blocks = " + str(thread_k_blocks));
}
A_ptr += 16 * thread_m_blocks * (prob_k / 8) * par;
C_ptr += 16 * thread_m_blocks * (prob_n / 8) * par;
}
}
} // namespace fp8_marlin
torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
torch::Tensor& b_scales, torch::Tensor& workspace,
int64_t num_bits, int64_t size_m, int64_t size_n,
int64_t size_k) {
// Verify num_bits
TORCH_CHECK(num_bits == 8, "num_bits must be 8. Got = ", num_bits);
int pack_factor = 32 / num_bits;
// Verify A
TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0),
", size_m = ", size_m);
TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1),
", size_k = ", size_k);
// Verify B
TORCH_CHECK(size_k % marlin::tile_size == 0, "size_k = ", size_k,
" is not divisible by tile_size = ", marlin::tile_size);
TORCH_CHECK((size_k / marlin::tile_size) == b_q_weight.size(0),
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
", size_k = ", size_k, ", tile_size = ", marlin::tile_size);
TORCH_CHECK(b_q_weight.size(1) % marlin::tile_size == 0,
"b_q_weight.size(1) = ", b_q_weight.size(1),
" is not divisible by tile_size = ", marlin::tile_size);
int actual_size_n = (b_q_weight.size(1) / marlin::tile_size) * pack_factor;
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
", actual_size_n = ", actual_size_n);
// Verify device and strides
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
torch::Tensor c = torch::empty({size_m, size_n}, options);
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_k = -1;
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_n = -1;
// sms: number of SMs to use for the kernel (can usually be left as auto -1)
int sms = -1;
// Detect groupsize and act_order
int num_groups = -1;
int group_size = -1;
int b_rank = b_scales.sizes().size();
TORCH_CHECK(b_rank == 2, "b_scales rank = ", b_rank, " is not 2");
TORCH_CHECK(b_scales.size(1) == size_n, "b_scales dim 1 = ", b_scales.size(1),
" is not size_n = ", size_n);
// Channelwise only for FP8
TORCH_CHECK(b_scales.size(0) == 1)
num_groups = b_scales.size(0);
// Verify workspace size
TORCH_CHECK(size_n % marlin::min_thread_n == 0, "size_n = ", size_n,
", is not divisible by min_thread_n = ", marlin::min_thread_n);
int min_workspace_size = (size_n / marlin::min_thread_n) * marlin::max_par;
TORCH_CHECK(workspace.numel() >= min_workspace_size,
"workspace.numel = ", workspace.numel(),
" is below min_workspace_size = ", min_workspace_size);
int dev = a.get_device();
if (a.scalar_type() == at::ScalarType::Half) {
fp8_marlin::marlin_mm_f16i4<half>(
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
b_scales.data_ptr<at::Half>(), size_m, size_n, size_k,
workspace.data_ptr(), num_bits, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
marlin::max_par);
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
fp8_marlin::marlin_mm_f16i4<nv_bfloat16>(
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
c.data_ptr<at::BFloat16>(), b_scales.data_ptr<at::BFloat16>(), size_m,
size_n, size_k, workspace.data_ptr(), num_bits, num_groups, group_size,
dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
marlin::max_par);
} else {
TORCH_CHECK(false, "fp8_marlin_gemm only supports bfloat16 and float16");
}
return c;
}
#endif
|