File size: 5,628 Bytes
5c6fb68
 
0da5bf5
 
5c6fb68
0da5bf5
5c6fb68
 
 
 
 
 
 
 
 
 
 
 
 
 
0da5bf5
5c6fb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da5bf5
5c6fb68
0da5bf5
 
5c6fb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da5bf5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#pragma once

#include "vectorization.cuh"

#include <cmath>
#include <c10/core/ScalarType.h>

#ifndef USE_ROCM
  #include <c10/util/Float8_e4m3fn.h>
using FP8_TYPE = c10::Float8_e4m3fn;
C10_HOST_DEVICE constexpr auto FP8_E4M3_MAX =
    std::numeric_limits<FP8_TYPE>::max();
#else
  #include <c10/util/Float8_e4m3fnuz.h>
  #include "amd/hip_float8.h"
using FP8_TYPE = c10::Float8_e4m3fnuz;
// Using the default max value from pytorch (240.0) will cause accuracy
// issue when running dynamic quantization. Here use 224.0f for rocm.
constexpr auto FP8_E4M3_MAX = 224.0f;
#endif
constexpr static auto kFp8Type = c10::CppTypeToScalarType<FP8_TYPE>::value;

namespace vllm {

__device__ __forceinline__ float atomicMaxFloat(float* addr, float value) {
  float old;
  old = (value >= 0)
            ? __int_as_float(atomicMax((int*)addr, __float_as_int(value)))
            : __uint_as_float(
                  atomicMin((unsigned int*)addr, __float_as_uint(value)));

  return old;
}

template <bool is_scale_inverted>
__device__ __forceinline__ FP8_TYPE scaled_fp8_conversion(float const val,
                                                          float const scale) {
  float x = 0.0f;
  if constexpr (is_scale_inverted) {
    x = val * scale;
  } else {
    x = val / scale;
  }

  float r = fmax(-FP8_E4M3_MAX, fmin(x, FP8_E4M3_MAX));
#ifndef USE_ROCM
  return static_cast<c10::Float8_e4m3fn>(r);
#else
  // Use hardware cvt instruction for fp8 on rocm
  return c10::Float8_e4m3fnuz(hip_fp8(r).data,
                              c10::Float8_e4m3fnuz::from_bits());
#endif
}

// Compute the absolute maximum m of the input tensor and store
// m / float8_e4m3::max() in *scale. Each thread block performs a
// reduction tree and the memory in scale is atomically updated.
// So to get the right answer, *scale needs to be initialized to
// a value <= 0.0 and we need to wait for all thread blocks to
// finish before consuming *scale.
template <typename scalar_t>
__global__ void segmented_max_reduction(float* __restrict__ scale,
                                        const scalar_t* __restrict__ input,
                                        int64_t num_elems) {
  __shared__ float cache[1024];
  int64_t i = blockDim.x * blockIdx.x + threadIdx.x;

  // First store maximum for all values processes by
  // the current thread in cache[threadIdx.x]
  scalar_t tmp = 0.0;
  while (i < num_elems) {
    float x = static_cast<float>(input[i]);
    tmp = max(tmp, fabs(x));
    i += blockDim.x * gridDim.x;
  }
  cache[threadIdx.x] = tmp;

  __syncthreads();

  // Now perform parallel reduction within the thread block
  int ib = blockDim.x / 2;
  while (ib != 0) {
    if (threadIdx.x < ib && cache[threadIdx.x + ib] > cache[threadIdx.x]) {
      cache[threadIdx.x] = cache[threadIdx.x + ib];
    }
    __syncthreads();
    ib /= 2;
  }
  // Finally, since cache[0] contains the maximum for this thread block,
  // atomically write the max to the target location
  if (threadIdx.x == 0) {
    atomicMaxFloat(scale, cache[0] / FP8_E4M3_MAX);
  }
}

template <typename scalar_t>
__device__ float thread_max_vec(scalar_t const* __restrict__ input,
                                int64_t const num_elems, int const tid,
                                int const step) {
  // Vectorized input/output to better utilize memory bandwidth.
  vec4_t<scalar_t> const* vectorized_in =
      reinterpret_cast<vec4_t<scalar_t> const*>(input);

  int64_t const num_vec_elems = num_elems >> 2;
  float absmax_val = 0.0f;

#pragma unroll 4
  for (int64_t i = tid; i < num_vec_elems; i += step) {
    vec4_t<scalar_t> in_vec = vectorized_in[i];
    absmax_val = max(absmax_val, fabs(in_vec.x));
    absmax_val = max(absmax_val, fabs(in_vec.y));
    absmax_val = max(absmax_val, fabs(in_vec.z));
    absmax_val = max(absmax_val, fabs(in_vec.w));
  }

  // Handle the remaining elements if num_elems is not divisible by 4
  for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
    absmax_val = max(absmax_val, fabs(input[i]));
  }

  return absmax_val;
}

template <typename scalar_t, bool is_scale_inverted>
__device__ void scaled_fp8_conversion_vec(FP8_TYPE* __restrict__ out,
                                          scalar_t const* __restrict__ input,
                                          float const scale,
                                          int64_t const num_elems,
                                          int const tid, int const step) {
  using float8x4_t = q8x4_t<FP8_TYPE>;
  // Vectorized input/output to better utilize memory bandwidth.
  auto const* vectorized_in = reinterpret_cast<vec4_t<scalar_t> const*>(input);
  auto* vectorized_out = reinterpret_cast<float8x4_t*>(out);

  int64_t const num_vec_elems = num_elems >> 2;

#pragma unroll 4
  for (int64_t i = tid; i < num_vec_elems; i += step) {
    vec4_t<scalar_t> in_vec = vectorized_in[i];
    float8x4_t out_vec;

    out_vec.x = scaled_fp8_conversion<is_scale_inverted>(
        static_cast<float>(in_vec.x), scale);
    out_vec.y = scaled_fp8_conversion<is_scale_inverted>(
        static_cast<float>(in_vec.y), scale);
    out_vec.z = scaled_fp8_conversion<is_scale_inverted>(
        static_cast<float>(in_vec.z), scale);
    out_vec.w = scaled_fp8_conversion<is_scale_inverted>(
        static_cast<float>(in_vec.w), scale);
    vectorized_out[i] = out_vec;
  }

  // Handle the remaining elements if num_elems is not divisible by 4
  for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
    out[i] = scaled_fp8_conversion<is_scale_inverted>(
        static_cast<float>(input[i]), scale);
  }
}

}  // namespace vllm