File size: 15,504 Bytes
b4cad21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/***************************************************************************************************
 * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights
 *reserved. SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 *ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 *LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 *INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 *CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 *ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/

//
// This file is a modified excerpt of
// include/cutlass/epilogue/fusion/visitor_load.hpp from
// https://github.com/NVIDIA/cutlass v3.5.0
// It has been modified to support either
// row/column or scalar broadcasting where the tensor being loaded from is
// always passed in via a device pointer. This lets one compiled kernel handle
// all cases of per-tensor or per-channel/per-token quantization.
//
// This interface also allows the scales to be passed in as tensors that
// consistently reside on the device, which avoids an issue with a previous
// implementation where scalars needed to be on the CPU since they
// were passed in via float values. This created a potential performance hazard
// if scales were initially on the device, and caused torch.compile graph
// breaks when moving scales to the CPU.
//
#pragma once

// Turn off clang-format for the entire file to keep it close to upstream
// clang-format off

#include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp"
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cute/tensor.hpp"

namespace cutlass::epilogue::threadblock {

using namespace cute;
using namespace detail;

template<
  class ThreadMap,
  class Element,
  class StrideMNL
>
struct VisitorRowOrScalarBroadcast {

  // This struct has been modified to have a bool indicating that ptr_row is a 
  // scalar that must be broadcast.
  struct Arguments {
    Element const* ptr_row = nullptr;
    bool row_broadcast = true;
    StrideMNL dRow = {};
  };

  using Params = Arguments;

  template <class ProblemShape>
  static constexpr Params
  to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
    return args;
  }

  template <class ProblemShape>
  static size_t
  get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
    return 0;
  }

  struct SharedStorage {};

  // Global load type
  static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value;
  using VecType = uint_bit_t<cute::min(128, vec_bits)>;
  static int constexpr VecLength = sizeof(VecType) / sizeof(Element);

  CUTLASS_HOST_DEVICE
  VisitorRowOrScalarBroadcast() { }

  CUTLASS_HOST_DEVICE
  VisitorRowOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
    : params_ptr(&params) { }

  Params const* params_ptr;

  template <class GTensor, class RTensor, class CTensor, class ProblemShape>
  struct Callbacks : EmptyCallbacks {
    CUTLASS_DEVICE
    Callbacks(
      GTensor&& tC_gRow,
      RTensor&& tC_rRow,
      CTensor&& tC_cRow,
      ProblemShape problem_shape,
      Params const* params_ptr
    ):
      tC_gRow(cute::forward<GTensor>(tC_gRow)),
      tC_rRow(cute::forward<RTensor>(tC_rRow)),
      tC_cRow(cute::forward<CTensor>(tC_cRow)),
      n(get<1>(problem_shape)),
      params_ptr(params_ptr) { }

    GTensor tC_gRow;
    RTensor tC_rRow;
    CTensor tC_cRow;
    Params const* params_ptr;
    int n;

    // This function is modified from VisitorRowBroadcast
    CUTLASS_DEVICE void
    begin_epilogue() {
      clear(tC_rRow);
      auto src_v = filter(tC_gRow);
      auto coord_v = filter(tC_cRow);
      auto dst_v = filter(tC_rRow);

      if (params_ptr->row_broadcast) {
        // In this case we are loading from a row vector and broadcasting
        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < size(src_v); ++i) {
          bool guard = get<1>(coord_v(i)) < n;
          cutlass::arch::global_load<VecType, sizeof(VecType)>(
              dst_v(i), (void const*)&src_v(i), guard);
        }
      } else {
        // In this case we are loading from a scalar and broadcasting
        VecType filled_vec;
        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < VecLength; i++) {
          reinterpret_cast<Element*>(&filled_vec)[i] = *(params_ptr->ptr_row);
        }

        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < size(src_v); ++i) {
          if (get<1>(coord_v(i)) < n) {
            dst_v(i) = filled_vec;
          }
        }
      }
    }

    template <class ElementAccumulator, int FragmentSize>
    CUTLASS_DEVICE auto // returns an Array
    visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
          Array<ElementAccumulator, FragmentSize> const& frg_acc) {
      Tensor rRow_frg = recast<Array<Element, FragmentSize>>(coalesce(tC_rRow));
      return rRow_frg(column_idx);
    }
  };

  template <class ProblemShape>
  CUTLASS_DEVICE auto
  get_callbacks(
    gemm::GemmCoord threadblock_tile_offset,
    int thread_idx,
    ProblemShape problem_shape
  ) {
    Tensor mRow = make_tensor(
      make_gmem_ptr(params_ptr->ptr_row),
      problem_shape,
      params_ptr->dRow);

    // VECTOR, FRAGMENT_COLUMN
    Tensor tC_gRow = recast<VecType>(
      ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset)
    )(_,_,_0{},_0{},_0{},_0{});
    Tensor tC_rRow = make_tensor_like(tC_gRow);

    // Generate the pred tensor
    Tensor cRow = make_identity_tensor(mRow.shape());
    Tensor tC_cRow = outer_partition(
      ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}),
      Shape<Int<VecLength>>{},
      (_0{})
    );

    return Callbacks<
      decltype(tC_gRow), decltype(tC_rRow),
      decltype(tC_cRow), ProblemShape>(
      cute::move(tC_gRow),
      cute::move(tC_rRow),
      cute::move(tC_cRow),
      problem_shape,
      params_ptr
    );
  }

};

/////////////////////////////////////////////////////////////////////////////////////////////////

// This is a modified RowBroadcast that will broadcast 0 if ptr_row is null
template<
  class ThreadMap,
  class Element,
  class StrideMNL
>
struct VisitorRowOrZeroBroadcast {

  // This struct has been modified to remove null_default (because it's always 0)
  struct Arguments {
    Element const* ptr_row = nullptr;
    StrideMNL dRow = {};
  };

  using Params = Arguments;

  template <class ProblemShape>
  static constexpr Params
  to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
    return args;
  }

  template <class ProblemShape>
  static size_t
  get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
    return 0;
  }

  struct SharedStorage {};

  // Global load type
  static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value;
  using VecType = uint_bit_t<cute::min(128, vec_bits)>;
  static int constexpr VecLength = sizeof(VecType) / sizeof(Element);

  CUTLASS_HOST_DEVICE
  VisitorRowOrZeroBroadcast() { }

  CUTLASS_HOST_DEVICE
  VisitorRowOrZeroBroadcast(Params const& params, SharedStorage const& shared_storage)
    : params_ptr(&params) { }

  Params const* params_ptr;

  template <class GTensor, class RTensor, class CTensor, class ProblemShape>
  struct Callbacks : EmptyCallbacks {
    CUTLASS_DEVICE
    Callbacks(
      GTensor&& tC_gRow,
      RTensor&& tC_rRow,
      CTensor&& tC_cRow,
      ProblemShape problem_shape,
      Params const* params_ptr
    ):
      tC_gRow(cute::forward<GTensor>(tC_gRow)),
      tC_rRow(cute::forward<RTensor>(tC_rRow)),
      tC_cRow(cute::forward<CTensor>(tC_cRow)),
      n(get<1>(problem_shape)),
      params_ptr(params_ptr) { }

    GTensor tC_gRow;
    RTensor tC_rRow;
    CTensor tC_cRow;
    Params const* params_ptr;
    int n;

    // This function is modified from VisitorRowBroadcast
    CUTLASS_DEVICE void
    begin_epilogue() {
      clear(tC_rRow);
      auto src_v = filter(tC_gRow);
      auto coord_v = filter(tC_cRow);
      auto dst_v = filter(tC_rRow);

      if (params_ptr->ptr_row != nullptr) {
        // In this case we are loading from a row vector and broadcasting
        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < size(src_v); ++i) {
          bool guard = get<1>(coord_v(i)) < n;
          cutlass::arch::global_load<VecType, sizeof(VecType)>(
              dst_v(i), (void const*)&src_v(i), guard);
        }
      } else {
        // In this case we are broadcasting 0
        VecType filled_vec;
        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < VecLength; i++) {
          reinterpret_cast<Element*>(&filled_vec)[i] = Element{0};
        }

        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < size(src_v); ++i) {
          if (get<1>(coord_v(i)) < n) {
            dst_v(i) = filled_vec;
          }
        }
      }
    }

    template <class ElementAccumulator, int FragmentSize>
    CUTLASS_DEVICE auto // returns an Array
    visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
          Array<ElementAccumulator, FragmentSize> const& frg_acc) {
      Tensor rRow_frg = recast<Array<Element, FragmentSize>>(coalesce(tC_rRow));
      return rRow_frg(column_idx);
    }
  };

  template <class ProblemShape>
  CUTLASS_DEVICE auto
  get_callbacks(
    gemm::GemmCoord threadblock_tile_offset,
    int thread_idx,
    ProblemShape problem_shape
  ) {
    Tensor mRow = make_tensor(
      make_gmem_ptr(params_ptr->ptr_row),
      problem_shape,
      params_ptr->dRow);

    // VECTOR, FRAGMENT_COLUMN
    Tensor tC_gRow = recast<VecType>(
      ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset)
    )(_,_,_0{},_0{},_0{},_0{});
    Tensor tC_rRow = make_tensor_like(tC_gRow);

    // Generate the pred tensor
    Tensor cRow = make_identity_tensor(mRow.shape());
    Tensor tC_cRow = outer_partition(
      ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}),
      Shape<Int<VecLength>>{},
      (_0{})
    );

    return Callbacks<
      decltype(tC_gRow), decltype(tC_rRow),
      decltype(tC_cRow), ProblemShape>(
      cute::move(tC_gRow),
      cute::move(tC_rRow),
      cute::move(tC_cRow),
      problem_shape,
      params_ptr
    );
  }

};


/////////////////////////////////////////////////////////////////////////////////////////////////

// Column vector broadcast
template<
  class ThreadMap,
  class Element,
  class StrideMNL = Stride<_1,_0,_0>
>
struct VisitorColOrScalarBroadcast {

  // This struct has been modified to have a bool indicating that ptr_col is a
  // scalar that must be broadcast.
  struct Arguments {
    Element const* ptr_col = nullptr;
    bool col_broadcast = true;
    StrideMNL dCol = {};
  };

  using Params = Arguments;

  template <class ProblemShape>
  static constexpr Params
  to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
    return args;
  }

  template <class ProblemShape>
  static size_t
  get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
    return 0;
  }

  struct SharedStorage { };

  CUTLASS_HOST_DEVICE
  VisitorColOrScalarBroadcast() { }

  CUTLASS_HOST_DEVICE
  VisitorColOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
    : params_ptr(&params) { }

  Params const* params_ptr;

  template <class GTensor, class RTensor, class CTensor, class ProblemShape>
  struct Callbacks : EmptyCallbacks {
    CUTLASS_DEVICE
    Callbacks(
      GTensor&& tC_gCol,
      RTensor&& tC_rCol,
      CTensor&& tC_cCol,
      ProblemShape problem_shape,
      Params const* params_ptr
    ):
      tC_gCol(cute::forward<GTensor>(tC_gCol)),
      tC_rCol(cute::forward<RTensor>(tC_rCol)),
      tC_cCol(cute::forward<CTensor>(tC_cCol)),
      m(get<0>(problem_shape)),
      params_ptr(params_ptr) { }

    GTensor tC_gCol;
    RTensor tC_rCol;
    CTensor tC_cCol;
    Params const* params_ptr;
    int m;

    // This function is modified from VisitorColBroadcast
    CUTLASS_DEVICE void 
    begin_epilogue() {
      clear(tC_rCol);

      Tensor pred = make_tensor<bool>(shape(tC_gCol));
      CUTLASS_PRAGMA_UNROLL
      for (int i = 0; i < size(pred); ++i) {
        pred(i) = get<0>(tC_cCol(i)) < m;
      }

      if (params_ptr->col_broadcast) {
        // In this case we are loading from a column vector and broadcasting
        copy_if(pred, tC_gCol, tC_rCol);
      } else {
        // In this case we are loading from a scalar and broadcasting
        auto dst_v = filter(tC_rCol);

        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < size(dst_v); ++i) {
          if (pred(i)) {
            dst_v(i) = *(params_ptr->ptr_col);
          }
        }
      }
    }

    template <class ElementAccumulator, int FragmentSize>
    CUTLASS_DEVICE auto // returns an Array
    visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
          Array<ElementAccumulator, FragmentSize> const& frg_acc) {
      Array<Element, FragmentSize> frg_col;
      frg_col.fill(tC_rCol(row_idx,iter_idx));
      return frg_col;
    }
  };

  template <class ProblemShape>
  CUTLASS_DEVICE auto
  get_callbacks(
    gemm::GemmCoord threadblock_tile_offset,
    int thread_idx,
    ProblemShape problem_shape
  ) {
    Tensor mCol = make_tensor(
      make_gmem_ptr(params_ptr->ptr_col),
      problem_shape,
      params_ptr->dCol);

    // VECTOR, FRAGMENT_COLUMN, FRAGMENT_ROW, ITERATION_ROW, ITERATION_GROUP, ITERATION_CLUSTER
    Tensor tC_gCol = group_modes<1,4>(
      ThreadMap::partition(mCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_));
    Tensor tC_rCol = make_tensor_like(tC_gCol);

    // Generate the pred tensor
    Tensor cCol = make_identity_tensor(mCol.shape());
    Tensor tC_cCol = group_modes<1,4>(
      ThreadMap::partition(cCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_));

    return Callbacks<
      decltype(tC_gCol), decltype(tC_rCol),
      decltype(tC_cCol), ProblemShape>(
      cute::move(tC_gCol),
      cute::move(tC_rCol),
      cute::move(tC_cCol),
      problem_shape,
      params_ptr
    );
  }
};

}