File size: 15,504 Bytes
b4cad21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights
*reserved. SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
//
// This file is a modified excerpt of
// include/cutlass/epilogue/fusion/visitor_load.hpp from
// https://github.com/NVIDIA/cutlass v3.5.0
// It has been modified to support either
// row/column or scalar broadcasting where the tensor being loaded from is
// always passed in via a device pointer. This lets one compiled kernel handle
// all cases of per-tensor or per-channel/per-token quantization.
//
// This interface also allows the scales to be passed in as tensors that
// consistently reside on the device, which avoids an issue with a previous
// implementation where scalars needed to be on the CPU since they
// were passed in via float values. This created a potential performance hazard
// if scales were initially on the device, and caused torch.compile graph
// breaks when moving scales to the CPU.
//
#pragma once
// Turn off clang-format for the entire file to keep it close to upstream
// clang-format off
#include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp"
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cute/tensor.hpp"
namespace cutlass::epilogue::threadblock {
using namespace cute;
using namespace detail;
template<
class ThreadMap,
class Element,
class StrideMNL
>
struct VisitorRowOrScalarBroadcast {
// This struct has been modified to have a bool indicating that ptr_row is a
// scalar that must be broadcast.
struct Arguments {
Element const* ptr_row = nullptr;
bool row_broadcast = true;
StrideMNL dRow = {};
};
using Params = Arguments;
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
return args;
}
template <class ProblemShape>
static size_t
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
return 0;
}
struct SharedStorage {};
// Global load type
static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value;
using VecType = uint_bit_t<cute::min(128, vec_bits)>;
static int constexpr VecLength = sizeof(VecType) / sizeof(Element);
CUTLASS_HOST_DEVICE
VisitorRowOrScalarBroadcast() { }
CUTLASS_HOST_DEVICE
VisitorRowOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
: params_ptr(¶ms) { }
Params const* params_ptr;
template <class GTensor, class RTensor, class CTensor, class ProblemShape>
struct Callbacks : EmptyCallbacks {
CUTLASS_DEVICE
Callbacks(
GTensor&& tC_gRow,
RTensor&& tC_rRow,
CTensor&& tC_cRow,
ProblemShape problem_shape,
Params const* params_ptr
):
tC_gRow(cute::forward<GTensor>(tC_gRow)),
tC_rRow(cute::forward<RTensor>(tC_rRow)),
tC_cRow(cute::forward<CTensor>(tC_cRow)),
n(get<1>(problem_shape)),
params_ptr(params_ptr) { }
GTensor tC_gRow;
RTensor tC_rRow;
CTensor tC_cRow;
Params const* params_ptr;
int n;
// This function is modified from VisitorRowBroadcast
CUTLASS_DEVICE void
begin_epilogue() {
clear(tC_rRow);
auto src_v = filter(tC_gRow);
auto coord_v = filter(tC_cRow);
auto dst_v = filter(tC_rRow);
if (params_ptr->row_broadcast) {
// In this case we are loading from a row vector and broadcasting
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(src_v); ++i) {
bool guard = get<1>(coord_v(i)) < n;
cutlass::arch::global_load<VecType, sizeof(VecType)>(
dst_v(i), (void const*)&src_v(i), guard);
}
} else {
// In this case we are loading from a scalar and broadcasting
VecType filled_vec;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < VecLength; i++) {
reinterpret_cast<Element*>(&filled_vec)[i] = *(params_ptr->ptr_row);
}
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(src_v); ++i) {
if (get<1>(coord_v(i)) < n) {
dst_v(i) = filled_vec;
}
}
}
}
template <class ElementAccumulator, int FragmentSize>
CUTLASS_DEVICE auto // returns an Array
visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
Array<ElementAccumulator, FragmentSize> const& frg_acc) {
Tensor rRow_frg = recast<Array<Element, FragmentSize>>(coalesce(tC_rRow));
return rRow_frg(column_idx);
}
};
template <class ProblemShape>
CUTLASS_DEVICE auto
get_callbacks(
gemm::GemmCoord threadblock_tile_offset,
int thread_idx,
ProblemShape problem_shape
) {
Tensor mRow = make_tensor(
make_gmem_ptr(params_ptr->ptr_row),
problem_shape,
params_ptr->dRow);
// VECTOR, FRAGMENT_COLUMN
Tensor tC_gRow = recast<VecType>(
ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset)
)(_,_,_0{},_0{},_0{},_0{});
Tensor tC_rRow = make_tensor_like(tC_gRow);
// Generate the pred tensor
Tensor cRow = make_identity_tensor(mRow.shape());
Tensor tC_cRow = outer_partition(
ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}),
Shape<Int<VecLength>>{},
(_0{})
);
return Callbacks<
decltype(tC_gRow), decltype(tC_rRow),
decltype(tC_cRow), ProblemShape>(
cute::move(tC_gRow),
cute::move(tC_rRow),
cute::move(tC_cRow),
problem_shape,
params_ptr
);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// This is a modified RowBroadcast that will broadcast 0 if ptr_row is null
template<
class ThreadMap,
class Element,
class StrideMNL
>
struct VisitorRowOrZeroBroadcast {
// This struct has been modified to remove null_default (because it's always 0)
struct Arguments {
Element const* ptr_row = nullptr;
StrideMNL dRow = {};
};
using Params = Arguments;
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
return args;
}
template <class ProblemShape>
static size_t
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
return 0;
}
struct SharedStorage {};
// Global load type
static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value;
using VecType = uint_bit_t<cute::min(128, vec_bits)>;
static int constexpr VecLength = sizeof(VecType) / sizeof(Element);
CUTLASS_HOST_DEVICE
VisitorRowOrZeroBroadcast() { }
CUTLASS_HOST_DEVICE
VisitorRowOrZeroBroadcast(Params const& params, SharedStorage const& shared_storage)
: params_ptr(¶ms) { }
Params const* params_ptr;
template <class GTensor, class RTensor, class CTensor, class ProblemShape>
struct Callbacks : EmptyCallbacks {
CUTLASS_DEVICE
Callbacks(
GTensor&& tC_gRow,
RTensor&& tC_rRow,
CTensor&& tC_cRow,
ProblemShape problem_shape,
Params const* params_ptr
):
tC_gRow(cute::forward<GTensor>(tC_gRow)),
tC_rRow(cute::forward<RTensor>(tC_rRow)),
tC_cRow(cute::forward<CTensor>(tC_cRow)),
n(get<1>(problem_shape)),
params_ptr(params_ptr) { }
GTensor tC_gRow;
RTensor tC_rRow;
CTensor tC_cRow;
Params const* params_ptr;
int n;
// This function is modified from VisitorRowBroadcast
CUTLASS_DEVICE void
begin_epilogue() {
clear(tC_rRow);
auto src_v = filter(tC_gRow);
auto coord_v = filter(tC_cRow);
auto dst_v = filter(tC_rRow);
if (params_ptr->ptr_row != nullptr) {
// In this case we are loading from a row vector and broadcasting
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(src_v); ++i) {
bool guard = get<1>(coord_v(i)) < n;
cutlass::arch::global_load<VecType, sizeof(VecType)>(
dst_v(i), (void const*)&src_v(i), guard);
}
} else {
// In this case we are broadcasting 0
VecType filled_vec;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < VecLength; i++) {
reinterpret_cast<Element*>(&filled_vec)[i] = Element{0};
}
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(src_v); ++i) {
if (get<1>(coord_v(i)) < n) {
dst_v(i) = filled_vec;
}
}
}
}
template <class ElementAccumulator, int FragmentSize>
CUTLASS_DEVICE auto // returns an Array
visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
Array<ElementAccumulator, FragmentSize> const& frg_acc) {
Tensor rRow_frg = recast<Array<Element, FragmentSize>>(coalesce(tC_rRow));
return rRow_frg(column_idx);
}
};
template <class ProblemShape>
CUTLASS_DEVICE auto
get_callbacks(
gemm::GemmCoord threadblock_tile_offset,
int thread_idx,
ProblemShape problem_shape
) {
Tensor mRow = make_tensor(
make_gmem_ptr(params_ptr->ptr_row),
problem_shape,
params_ptr->dRow);
// VECTOR, FRAGMENT_COLUMN
Tensor tC_gRow = recast<VecType>(
ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset)
)(_,_,_0{},_0{},_0{},_0{});
Tensor tC_rRow = make_tensor_like(tC_gRow);
// Generate the pred tensor
Tensor cRow = make_identity_tensor(mRow.shape());
Tensor tC_cRow = outer_partition(
ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}),
Shape<Int<VecLength>>{},
(_0{})
);
return Callbacks<
decltype(tC_gRow), decltype(tC_rRow),
decltype(tC_cRow), ProblemShape>(
cute::move(tC_gRow),
cute::move(tC_rRow),
cute::move(tC_cRow),
problem_shape,
params_ptr
);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// Column vector broadcast
template<
class ThreadMap,
class Element,
class StrideMNL = Stride<_1,_0,_0>
>
struct VisitorColOrScalarBroadcast {
// This struct has been modified to have a bool indicating that ptr_col is a
// scalar that must be broadcast.
struct Arguments {
Element const* ptr_col = nullptr;
bool col_broadcast = true;
StrideMNL dCol = {};
};
using Params = Arguments;
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
return args;
}
template <class ProblemShape>
static size_t
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
return 0;
}
struct SharedStorage { };
CUTLASS_HOST_DEVICE
VisitorColOrScalarBroadcast() { }
CUTLASS_HOST_DEVICE
VisitorColOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
: params_ptr(¶ms) { }
Params const* params_ptr;
template <class GTensor, class RTensor, class CTensor, class ProblemShape>
struct Callbacks : EmptyCallbacks {
CUTLASS_DEVICE
Callbacks(
GTensor&& tC_gCol,
RTensor&& tC_rCol,
CTensor&& tC_cCol,
ProblemShape problem_shape,
Params const* params_ptr
):
tC_gCol(cute::forward<GTensor>(tC_gCol)),
tC_rCol(cute::forward<RTensor>(tC_rCol)),
tC_cCol(cute::forward<CTensor>(tC_cCol)),
m(get<0>(problem_shape)),
params_ptr(params_ptr) { }
GTensor tC_gCol;
RTensor tC_rCol;
CTensor tC_cCol;
Params const* params_ptr;
int m;
// This function is modified from VisitorColBroadcast
CUTLASS_DEVICE void
begin_epilogue() {
clear(tC_rCol);
Tensor pred = make_tensor<bool>(shape(tC_gCol));
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(pred); ++i) {
pred(i) = get<0>(tC_cCol(i)) < m;
}
if (params_ptr->col_broadcast) {
// In this case we are loading from a column vector and broadcasting
copy_if(pred, tC_gCol, tC_rCol);
} else {
// In this case we are loading from a scalar and broadcasting
auto dst_v = filter(tC_rCol);
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(dst_v); ++i) {
if (pred(i)) {
dst_v(i) = *(params_ptr->ptr_col);
}
}
}
}
template <class ElementAccumulator, int FragmentSize>
CUTLASS_DEVICE auto // returns an Array
visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
Array<ElementAccumulator, FragmentSize> const& frg_acc) {
Array<Element, FragmentSize> frg_col;
frg_col.fill(tC_rCol(row_idx,iter_idx));
return frg_col;
}
};
template <class ProblemShape>
CUTLASS_DEVICE auto
get_callbacks(
gemm::GemmCoord threadblock_tile_offset,
int thread_idx,
ProblemShape problem_shape
) {
Tensor mCol = make_tensor(
make_gmem_ptr(params_ptr->ptr_col),
problem_shape,
params_ptr->dCol);
// VECTOR, FRAGMENT_COLUMN, FRAGMENT_ROW, ITERATION_ROW, ITERATION_GROUP, ITERATION_CLUSTER
Tensor tC_gCol = group_modes<1,4>(
ThreadMap::partition(mCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_));
Tensor tC_rCol = make_tensor_like(tC_gCol);
// Generate the pred tensor
Tensor cCol = make_identity_tensor(mCol.shape());
Tensor tC_cCol = group_modes<1,4>(
ThreadMap::partition(cCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_));
return Callbacks<
decltype(tC_gCol), decltype(tC_rCol),
decltype(tC_cCol), ProblemShape>(
cute::move(tC_gCol),
cute::move(tC_rCol),
cute::move(tC_cCol),
problem_shape,
params_ptr
);
}
};
}
|