File size: 10,394 Bytes
5c6fb68 0da5bf5 5c6fb68 0da5bf5 5c6fb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include <cmath>
#include "dispatch_utils.h"
#ifndef USE_ROCM
#include <cub/util_type.cuh>
#include <cub/cub.cuh>
#else
#include <hipcub/util_type.hpp>
#include <hipcub/hipcub.hpp>
#endif
static inline __device__ int8_t float_to_int8_rn(float x) {
#ifdef USE_ROCM
static constexpr auto i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
static constexpr auto i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
// To match the rounding mode of CUDA, we use nearbyint.
// It uses the current rounding mode, which is always FE_TONEAREST on HIP.
// If that changes in the future, we may need to set the rounding mode
// explicitly, either at runtime or compile time.
float dst = std::nearbyint(x);
// saturate
dst = std::clamp(dst, i8_min, i8_max);
return static_cast<int8_t>(dst);
#else
// CUDA path
uint32_t dst;
asm volatile("cvt.rni.sat.s8.f32 %0, %1;" : "=r"(dst) : "f"(x));
return reinterpret_cast<const int8_t&>(dst);
#endif
}
static inline __device__ int32_t float_to_int32_rn(float x) {
#ifdef USE_ROCM
// int32_max is not exactly representable as float.
// Therefore, we need to be careful and manually return int32_max on overflow.
// For symmetry, we also do the same for int32_min, even though it is exactly
// representable as float and the conversion should be exact.
static constexpr auto i32_min = std::numeric_limits<int32_t>::min();
static constexpr auto i32_min_f = static_cast<float>(i32_min);
static constexpr auto i32_max = std::numeric_limits<int32_t>::max();
static constexpr auto i32_max_f = static_cast<float>(i32_max);
// To match the rounding mode of CUDA, we use nearbyint.
// It uses the current rounding mode, which is always FE_TONEAREST on HIP.
// If that changes in the future, we may need to set the rounding mode
// explicitly, either at runtime or compile time.
float dst = std::nearbyint(x);
// saturate on the higher end.
if (dst >= i32_max_f) {
return i32_max;
}
// saturate on the lower end.
if (dst <= i32_min_f) {
return i32_min;
}
return static_cast<int32_t>(dst);
#else
// CUDA path
uint32_t dst;
asm volatile("cvt.rni.sat.s32.f32 %0, %1;" : "=r"(dst) : "f"(x));
return reinterpret_cast<const int32_t&>(dst);
#endif
}
static inline __device__ int8_t int32_to_int8(int32_t x) {
#ifdef USE_ROCM
static constexpr auto i8_min =
static_cast<int32_t>(std::numeric_limits<int8_t>::min());
static constexpr auto i8_max =
static_cast<int32_t>(std::numeric_limits<int8_t>::max());
// saturate
int32_t dst = std::clamp(x, i8_min, i8_max);
return static_cast<int8_t>(dst);
#else
// CUDA path
uint32_t dst;
asm volatile("cvt.sat.s8.s32 %0, %1;" : "=r"(dst) : "r"(x));
return reinterpret_cast<const int8_t&>(dst);
#endif
}
namespace vllm {
template <typename scalar_t, typename scale_type>
__global__ void static_scaled_int8_quant_kernel(
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type const* scale_ptr, const int hidden_size) {
int const tid = threadIdx.x;
int64_t const token_idx = blockIdx.x;
scale_type const scale = *scale_ptr;
// Must be performed using 64-bit math to avoid integer overflow.
out += token_idx * hidden_size;
input += token_idx * hidden_size;
for (int i = tid; i < hidden_size; i += blockDim.x) {
out[i] = float_to_int8_rn(static_cast<float>(input[i]) / scale);
}
}
template <typename scalar_t, typename scale_type, typename azp_type>
__global__ void static_scaled_int8_azp_quant_kernel(
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type const* scale_ptr, azp_type const* azp_ptr,
const int hidden_size) {
int const tid = threadIdx.x;
int64_t const token_idx = blockIdx.x;
scale_type const scale = *scale_ptr;
azp_type const azp = *azp_ptr;
// Must be performed using 64-bit math to avoid integer overflow.
out += token_idx * hidden_size;
input += token_idx * hidden_size;
for (int i = tid; i < hidden_size; i += blockDim.x) {
auto const val = static_cast<float>(input[i]);
auto const quant_val = int32_to_int8(float_to_int32_rn(val / scale) + azp);
out[i] = quant_val;
}
}
template <typename scalar_t, typename scale_type>
__global__ void dynamic_scaled_int8_quant_kernel(
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type* scale, const int hidden_size) {
int const tid = threadIdx.x;
int64_t const token_idx = blockIdx.x;
float absmax_val = 0.0f;
float const zero = 0.0f;
// Must be performed using 64-bit math to avoid integer overflow.
out += token_idx * hidden_size;
input += token_idx * hidden_size;
for (int i = tid; i < hidden_size; i += blockDim.x) {
float val = static_cast<float>(input[i]);
val = val > zero ? val : -val;
absmax_val = val > absmax_val ? val : absmax_val;
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStorage;
float const block_absmax_val_maybe =
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
__shared__ float block_absmax_val;
if (tid == 0) {
block_absmax_val = block_absmax_val_maybe;
scale[token_idx] = block_absmax_val / 127.0f;
}
__syncthreads();
float const tmp_scale = 127.0f / block_absmax_val;
for (int i = tid; i < hidden_size; i += blockDim.x) {
out[i] = float_to_int8_rn(static_cast<float>(input[i]) * tmp_scale);
}
}
template <typename scalar_t, typename scale_type, typename azp_type>
__global__ void dynamic_scaled_int8_azp_quant_kernel(
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type* scale, azp_type* azp, const int hidden_size) {
int64_t const token_idx = blockIdx.x;
// Must be performed using 64-bit math to avoid integer overflow.
out += token_idx * hidden_size;
input += token_idx * hidden_size;
// Scan for the min and max value for this token
float max_val = std::numeric_limits<float>::min();
float min_val = std::numeric_limits<float>::max();
for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) {
auto val = static_cast<float>(input[i]);
max_val = std::max(max_val, val);
min_val = std::min(min_val, val);
}
// Reduce the max and min values across the block
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStorage;
max_val = BlockReduce(reduceStorage).Reduce(max_val, cub::Max{}, blockDim.x);
__syncthreads(); // Make sure min doesn't mess with max shared memory
min_val = BlockReduce(reduceStorage).Reduce(min_val, cub::Min{}, blockDim.x);
__shared__ scale_type scale_sh;
__shared__ azp_type azp_sh;
// Compute the scale and zero point and store them, only on the first thread
if (threadIdx.x == 0) {
float const scale_val = (max_val - min_val) / 255.0f;
// Use rounding to even (same as torch.round)
auto const azp_float = std::nearbyint(-128.0f - min_val / scale_val);
auto const azp_val = static_cast<azp_type>(azp_float);
// Store the scale and azp into shared and global
scale[token_idx] = scale_sh = scale_val;
azp[token_idx] = azp_sh = azp_val;
}
// Wait for the scale and azp to be computed
__syncthreads();
float const scale_val = scale_sh;
azp_type const azp_val = azp_sh;
// Quantize the values
for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) {
auto const val = static_cast<float>(input[i]);
auto const quant_val =
int32_to_int8(float_to_int32_rn(val / scale_val) + azp_val);
out[i] = quant_val;
}
}
} // namespace vllm
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
torch::Tensor const& input, // [..., hidden_size]
torch::Tensor const& scale,
std::optional<torch::Tensor> const& azp) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scale.numel() == 1);
TORCH_CHECK(!azp || azp->numel() == 1);
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 1024));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "static_scaled_int8_quant_kernel", [&] {
if (!azp) {
vllm::static_scaled_int8_quant_kernel<scalar_t, float>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), hidden_size);
} else {
vllm::static_scaled_int8_azp_quant_kernel<scalar_t, float, int32_t>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(),
hidden_size);
}
});
}
void dynamic_scaled_int8_quant(
torch::Tensor& out, // [..., hidden_size]
torch::Tensor const& input, // [..., hidden_size]
torch::Tensor& scales, std::optional<torch::Tensor> const& azp) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scales.is_contiguous());
TORCH_CHECK(!azp || azp->is_contiguous());
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 1024));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_scaled_int8_quant_kernel", [&] {
if (!azp) {
vllm::dynamic_scaled_int8_quant_kernel<scalar_t, float>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scales.data_ptr<float>(), hidden_size);
} else {
vllm::dynamic_scaled_int8_azp_quant_kernel<scalar_t, float, int32_t>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scales.data_ptr<float>(), azp->data_ptr<int32_t>(),
hidden_size);
}
});
}
|