File size: 8,104 Bytes
165b25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 * Copyright (C) 2024 Roberto Lopez Castro ([email protected]). All
 * Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *       http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once
#include "base.h"
#include <cudaTypedefs.h>

namespace marlin_24 {

// On CUDA earlier than 12.5, the ordered_metadata version of this instruction
// is not supported. On later versions of CUDA the version without ordered
// metadata results in the following warning:
//  | Advisory: Modifier ‘.sp::ordered_metadata’ should be used on instruction
//  | ‘mma’ instead of modifier ‘.sp’ as it is expected to have substantially
//  | reduced performance on some future architectures
#if defined CUDA_VERSION && CUDA_VERSION >= 12050
  #define MMA_SP_INST \
    "mma.sp::ordered_metadata.sync.aligned.m16n8k32.row.col.f32.f16.f16.f32 "
#else
  #define MMA_SP_INST "mma.sp.sync.aligned.m16n8k32.row.col.f32.f16.f16.f32 "
#endif

// m16n8k32 sparse tensor core mma instruction with fp16 inputs and fp32
// output/accumulation.
__device__ inline void mma_sp(const FragB& a_frag0, const FragB& a_frag1,
                              const FragA& frag_b, FragC& frag_c, FragM& frag_m,
                              const int psel) {
  const uint32_t* a0 = reinterpret_cast<const uint32_t*>(&a_frag0);
  const uint32_t* a1 = reinterpret_cast<const uint32_t*>(&a_frag1);
  const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
  const uint32_t* e = reinterpret_cast<const uint32_t*>(&frag_m);

  float* c = reinterpret_cast<float*>(&frag_c);
  if (psel == 0) {
    asm volatile(MMA_SP_INST
                 "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
                 "{%12,%13,%14,%15}, %16, 0x0;\n"
                 : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
                 : "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[0]),
                   "r"(b[2]), "r"(b[4]), "r"(b[6]), "f"(c[0]), "f"(c[1]),
                   "f"(c[2]), "f"(c[3]), "r"(e[0]));
    asm volatile(MMA_SP_INST
                 "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
                 "{%12,%13,%14,%15}, %16, 0x0;\n"
                 : "=f"(c[4]), "=f"(c[5]), "=f"(c[6]), "=f"(c[7])
                 : "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[1]),
                   "r"(b[3]), "r"(b[5]), "r"(b[7]), "f"(c[4]), "f"(c[5]),
                   "f"(c[6]), "f"(c[7]), "r"(e[0]));
  } else {
    asm volatile(MMA_SP_INST
                 "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
                 "{%12,%13,%14,%15}, %16, 0x1;\n"
                 : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
                 : "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[0]),
                   "r"(b[2]), "r"(b[4]), "r"(b[6]), "f"(c[0]), "f"(c[1]),
                   "f"(c[2]), "f"(c[3]), "r"(e[0]));
    asm volatile(MMA_SP_INST
                 "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
                 "{%12,%13,%14,%15}, %16, 0x1;\n"
                 : "=f"(c[4]), "=f"(c[5]), "=f"(c[6]), "=f"(c[7])
                 : "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[1]),
                   "r"(b[3]), "r"(b[5]), "r"(b[7]), "f"(c[4]), "f"(c[5]),
                   "f"(c[6]), "f"(c[7]), "r"(e[0]));
  }
}

// Lookup-table based 3-input logical operation; explicitly used for
// dequantization as the compiler does not seem to automatically recognize it in
// all cases.
template <int lut>
__device__ inline int lop3(int a, int b, int c) {
  int res;
  asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
               : "=r"(res)
               : "r"(a), "r"(b), "r"(c), "n"(lut));
  return res;
}

__device__ __forceinline__ uint2 to_half4(float c0, float c1, float c2,
                                          float c3) {
  uint2 r;
  asm("{\n\t"
      ".reg .f16 a, b, c, d; \n\t"
      "cvt.rn.f16.f32 a, %2; \n\t"
      "cvt.rn.f16.f32 b, %3; \n\t"
      "cvt.rn.f16.f32 c, %4; \n\t"
      "cvt.rn.f16.f32 d, %5; \n\t"
      "mov.b32 %0, {a, b};   \n\t"
      "mov.b32 %1, {c, d};   \n\t"
      "}"
      : "=r"(r.x), "=r"(r.y)
      : "f"(c0), "f"(c1), "f"(c2), "f"(c3));
  return r;
}

// Constructs destination register by taking bytes from 2 sources (based on
// mask)
template <int start_byte, int mask>
__device__ inline uint32_t prmt(uint32_t a) {
  uint32_t res;
  asm volatile("prmt.b32 %0, %1, %2, %3;\n"
               : "=r"(res)
               : "r"(a), "n"(start_byte), "n"(mask));
  return res;
}

// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
// values. We mostly follow the strategy in the link below, with some small
// changes:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
__device__ inline FragB dequant_4bit(int q) {
  const int LO = 0x000f000f;
  const int HI = 0x00f000f0;
  const int EX = 0x64006400;
  // Guarantee that the `(a & b) | c` operations are LOP3s.
  int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
  int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
  // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
  // directly into `SUB` and `ADD`.
  const int SUB = 0x64086408;
  const int MUL = 0x2c002c00;
  const int ADD = 0xd480d480;

  FragB frag_b;
  frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
                      *reinterpret_cast<const half2*>(&SUB));
  frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
                      *reinterpret_cast<const half2*>(&MUL),
                      *reinterpret_cast<const half2*>(&ADD));
  return frag_b;
}

// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
// values. We mostly follow the strategy in the link below, with some small
// changes:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
__device__ inline FragB dequant_8bit(int q) {
  static constexpr uint32_t mask_for_elt_01 = 0x5250;
  static constexpr uint32_t mask_for_elt_23 = 0x5351;
  static constexpr uint32_t start_byte_for_fp16 = 0x64646464;

  uint32_t lo = prmt<start_byte_for_fp16, mask_for_elt_01>(q);
  uint32_t hi = prmt<start_byte_for_fp16, mask_for_elt_23>(q);

  static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480;

  FragB frag_b;
  frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
                      *reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
  frag_b[1] = __hsub2(*reinterpret_cast<half2*>(&hi),
                      *reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
  return frag_b;
}

// Multiply dequantized values by the corresponding quantization scale; used
// only for grouped quantization.
__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) {
  half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]);
  frag_b[0] = __hmul2(frag_b[0], s);
  frag_b[1] = __hmul2(frag_b[1], s);
}

__device__ inline void scale_floats(float* c0, float* c1, float* c2, float* c3,
                                    FragS& s0, float* c4, float* c5, float* c6,
                                    float* c7, FragS& s1) {
  *c0 = __fmul_rn(*c0, __half2float(s0[0].x));
  *c1 = __fmul_rn(*c1, __half2float(s0[0].y));
  *c2 = __fmul_rn(*c2, __half2float(s0[1].x));
  *c3 = __fmul_rn(*c3, __half2float(s0[1].y));

  *c4 = __fmul_rn(*c4, __half2float(s1[0].x));
  *c5 = __fmul_rn(*c5, __half2float(s1[0].y));
  *c6 = __fmul_rn(*c6, __half2float(s1[1].x));
  *c7 = __fmul_rn(*c7, __half2float(s1[1].y));
}

}  // namespace marlin_24