File size: 11,136 Bytes
c31b5ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#include "marlin.cuh"
namespace marlin {
template <int const num_threads, int const num_bits, bool const has_perm>
__global__ void gptq_marlin_repack_kernel(
uint32_t const* __restrict__ b_q_weight_ptr,
uint32_t const* __restrict__ perm_ptr, uint32_t* __restrict__ out_ptr,
int size_k, int size_n) {
constexpr int pack_factor = 32 / num_bits;
int k_tiles = size_k / tile_k_size;
int n_tiles = size_n / tile_n_size;
int block_k_tiles = div_ceil(k_tiles, gridDim.x);
int start_k_tile = blockIdx.x * block_k_tiles;
if (start_k_tile >= k_tiles) {
return;
}
int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles);
// Wait until the next thread tile has been loaded to shared memory.
auto wait_for_stage = [&]() {
// We only have `stages - 2` active fetches since we are double buffering
// and can only issue the next fetch when it is guaranteed that the previous
// shared memory load is fully complete (as it may otherwise be
// overwritten).
cp_async_wait<repack_stages - 2>();
__syncthreads();
};
extern __shared__ int4 sh[];
constexpr int perm_size = tile_k_size / 4;
int4* sh_perm_ptr = sh;
int4* sh_pipe_ptr = sh_perm_ptr;
if constexpr (has_perm) {
sh_pipe_ptr += perm_size;
}
constexpr int tile_ints = tile_k_size / pack_factor;
constexpr int stage_n_threads = tile_n_size / 4;
constexpr int stage_k_threads = has_perm ? tile_k_size : tile_ints;
constexpr int stage_size = stage_k_threads * stage_n_threads;
auto load_perm_to_shared = [&](int k_tile_id) {
int first_k_int4 = (k_tile_id * tile_k_size) / 4;
int4 const* perm_int4_ptr = reinterpret_cast<int4 const*>(perm_ptr);
if (threadIdx.x < perm_size) {
sh_perm_ptr[threadIdx.x] = perm_int4_ptr[first_k_int4 + threadIdx.x];
}
__syncthreads();
};
auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) {
if (n_tile_id >= n_tiles) {
cp_async_fence();
return;
}
int first_n = n_tile_id * tile_n_size;
int4* sh_ptr = sh_pipe_ptr + stage_size * pipe;
if constexpr (has_perm) {
if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;
uint32_t const* sh_perm_int_ptr =
reinterpret_cast<uint32_t const*>(sh_perm_ptr);
int src_k = sh_perm_int_ptr[k_id];
int src_k_packed = src_k / pack_factor;
cp_async4(
&sh_ptr[k_id * stage_n_threads + n_id],
reinterpret_cast<int4 const*>(&(
b_q_weight_ptr[src_k_packed * size_n + first_n + (n_id * 4)])));
}
} else {
if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;
int first_k = k_tile_id * tile_k_size;
int first_k_packed = first_k / pack_factor;
cp_async4(&sh_ptr[k_id * stage_n_threads + n_id],
reinterpret_cast<int4 const*>(
&(b_q_weight_ptr[(first_k_packed + k_id) * size_n +
first_n + (n_id * 4)])));
}
}
cp_async_fence();
};
auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) {
if (n_tile_id >= n_tiles) {
return;
}
int warp_id = threadIdx.x / 32;
int th_id = threadIdx.x % 32;
if (warp_id >= 4) {
return;
}
int tc_col = th_id / 4;
int tc_row = (th_id % 4) * 2;
constexpr int tc_offsets[4] = {0, 1, 8, 9};
int cur_n = warp_id * 16 + tc_col;
constexpr int sh_stride = 64;
constexpr uint32_t mask = (1 << num_bits) - 1;
int4* sh_stage_ptr = sh_pipe_ptr + stage_size * pipe;
uint32_t* sh_stage_int_ptr = reinterpret_cast<uint32_t*>(sh_stage_ptr);
uint32_t* sh_perm_int_ptr = reinterpret_cast<uint32_t*>(sh_perm_ptr);
uint32_t vals[8];
if constexpr (has_perm) {
for (int i = 0; i < 4; i++) {
int k_idx = tc_row + tc_offsets[i];
uint32_t src_k = sh_perm_int_ptr[k_idx];
uint32_t src_k_pos = src_k % pack_factor;
uint32_t b1_val = sh_stage_int_ptr[k_idx * sh_stride + cur_n];
uint32_t b1_cur_val = (b1_val >> (src_k_pos * num_bits)) & mask;
uint32_t b2_val = sh_stage_int_ptr[k_idx * sh_stride + cur_n + 8];
uint32_t b2_cur_val = (b2_val >> (src_k_pos * num_bits)) & mask;
vals[i] = b1_cur_val;
vals[4 + i] = b2_cur_val;
}
} else {
uint32_t b1_vals[tile_ints];
uint32_t b2_vals[tile_ints];
#pragma unroll
for (int i = 0; i < tile_ints; i++) {
b1_vals[i] = sh_stage_int_ptr[cur_n + sh_stride * i];
b2_vals[i] = sh_stage_int_ptr[cur_n + 8 + sh_stride * i];
}
#pragma unroll
for (int i = 0; i < 4; i++) {
int cur_elem = tc_row + tc_offsets[i];
int cur_int = cur_elem / pack_factor;
int cur_pos = cur_elem % pack_factor;
vals[i] = (b1_vals[cur_int] >> (cur_pos * num_bits)) & mask;
vals[4 + i] = (b2_vals[cur_int] >> (cur_pos * num_bits)) & mask;
}
}
constexpr int tile_size = tile_k_size * tile_n_size / pack_factor;
int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size;
// Result of:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
if constexpr (num_bits == 4) {
constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7};
uint32_t res = 0;
#pragma unroll
for (int i = 0; i < 8; i++) {
res |= vals[pack_idx[i]] << (i * 4);
}
out_ptr[out_offset + th_id * 4 + warp_id] = res;
} else {
constexpr int pack_idx[4] = {0, 2, 1, 3};
uint32_t res1 = 0;
uint32_t res2 = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
res1 |= vals[pack_idx[i]] << (i * 8);
res2 |= vals[4 + pack_idx[i]] << (i * 8);
}
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1;
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2;
}
};
auto start_pipes = [&](int k_tile_id, int n_tile_id) {
#pragma unroll
for (int pipe = 0; pipe < repack_stages - 1; pipe++) {
fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe);
}
wait_for_stage();
};
#pragma unroll
for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) {
int n_tile_id = 0;
if constexpr (has_perm) {
load_perm_to_shared(k_tile_id);
}
start_pipes(k_tile_id, n_tile_id);
while (n_tile_id < n_tiles) {
#pragma unroll
for (int pipe = 0; pipe < repack_stages; pipe++) {
fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id,
n_tile_id + pipe + repack_stages - 1);
repack_tile(pipe, k_tile_id, n_tile_id + pipe);
wait_for_stage();
}
n_tile_id += repack_stages;
}
}
}
} // namespace marlin
#define CALL_IF(NUM_BITS, HAS_PERM) \
else if (num_bits == NUM_BITS && has_perm == HAS_PERM) { \
cudaFuncSetAttribute( \
marlin::gptq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS, \
HAS_PERM>, \
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
marlin::gptq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS, \
HAS_PERM> \
<<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \
b_q_weight_ptr, perm_ptr, out_ptr, size_k, size_n); \
}
torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
int64_t size_k, int64_t size_n,
int64_t num_bits) {
// Verify compatibility with marlin tile of 16x64
TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k,
" is not divisible by tile_k_size = ", marlin::tile_k_size);
TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n,
" is not divisible by tile_n_size = ", marlin::tile_n_size);
TORCH_CHECK(num_bits == 4 || num_bits == 8,
"num_bits must be 4 or 8. Got = ", num_bits);
int const pack_factor = 32 / num_bits;
// Verify B
TORCH_CHECK((size_k / pack_factor) == b_q_weight.size(0),
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
", size_k = ", size_k, ", pack_factor = ", pack_factor);
TORCH_CHECK(b_q_weight.size(1) == size_n,
"b_q_weight.size(1) = ", b_q_weight.size(1),
" is not size_n = ", size_n);
// Verify device and strides
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt");
TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU");
TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");
TORCH_CHECK(perm.dtype() == at::kInt, "perm type is not at::kInt");
// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight));
auto options = torch::TensorOptions()
.dtype(b_q_weight.dtype())
.device(b_q_weight.device());
torch::Tensor out = torch::empty(
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor},
options);
// Detect if there is act_order
bool has_perm = perm.size(0) != 0;
// Get ptrs
uint32_t const* b_q_weight_ptr =
reinterpret_cast<uint32_t const*>(b_q_weight.data_ptr());
uint32_t const* perm_ptr = reinterpret_cast<uint32_t const*>(perm.data_ptr());
uint32_t* out_ptr = reinterpret_cast<uint32_t*>(out.data_ptr());
// Get dev info
int dev = b_q_weight.get_device();
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
int blocks;
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
if (false) {
}
CALL_IF(4, false)
CALL_IF(4, true)
CALL_IF(8, false)
CALL_IF(8, true)
else {
TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits,
", has_perm = ", has_perm);
}
return out;
}
torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight,
torch::Tensor& perm, c10::SymInt size_k,
c10::SymInt size_n, int64_t num_bits) {
int const pack_factor = 32 / num_bits;
auto options = torch::TensorOptions()
.dtype(b_q_weight.dtype())
.device(b_q_weight.device());
return torch::empty_symint(
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor},
options);
}
|