File size: 1,441 Bytes
b4cad21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from typing import Optional

import torch

try:
    from ._ops import ops
except ImportError as e:
    # Fallback for local development.
    try:
        import _quantization
        ops = torch.ops._quantization
    except ImportError:
        raise e

def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
    return ops.cutlass_scaled_mm_supports_fp8(cuda_device_capability)

def cutlass_scaled_mm(a: torch.Tensor,
                      b: torch.Tensor,
                      scale_a: torch.Tensor,
                      scale_b: torch.Tensor,
                      out_dtype: torch.dtype,
                      bias: Optional[torch.Tensor] = None) -> torch.Tensor:
    assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
    assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
    assert bias is None or bias.shape[0] == b.shape[
        1] and bias.dtype == out_dtype

    m = a.shape[0]
    n = b.shape[1]

    #if current_platform.is_rocm():
    #    triton_scaled_mm_module = importlib.import_module(
    #        "vllm.model_executor.layers.quantization.compressed_tensors."
    #        "triton_scaled_mm")
    #    triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm
    #    return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)

    out = torch.empty((m, n), dtype=out_dtype, device=a.device)

    ops.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)

    return out