File size: 11,754 Bytes
5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 8aa00a3 5c6fb68 0da5bf5 5c6fb68 8aa00a3 5c6fb68 0da5bf5 5c6fb68 8aa00a3 5c6fb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include <cmath>
#include "../dispatch_utils.h"
#include "../vectorization_utils.cuh"
#ifndef USE_ROCM
#include <cub/cub.cuh>
#include <cub/util_type.cuh>
#else
#include <hipcub/hipcub.hpp>
#include <hipcub/util_type.hpp>
#endif
static inline __device__ int8_t float_to_int8_rn(float x) {
#ifdef USE_ROCM
static constexpr auto i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
static constexpr auto i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
// To match the rounding mode of CUDA, we use nearbyint.
// It uses the current rounding mode, which is always FE_TONEAREST on HIP.
// If that changes in the future, we may need to set the rounding mode
// explicitly, either at runtime or compile time.
float dst = std::nearbyint(x);
// saturate
// See https://github.com/pytorch/pytorch/issues/127666
// See https://github.com/llvm/llvm-project/issues/95183
// hip-clang std::clamp __glibcxx_assert_fail host function when building on
// Arch/gcc14. The following replaces std::clamp usage with similar logic
// dst = std::clamp(dst, i8_min, i8_max);
dst = (dst < i8_min) ? i8_min : (dst > i8_max) ? i8_max : dst;
return static_cast<int8_t>(dst);
#else
// CUDA path
uint32_t dst;
asm volatile("cvt.rni.sat.s8.f32 %0, %1;" : "=r"(dst) : "f"(x));
return reinterpret_cast<const int8_t&>(dst);
#endif
}
static inline __device__ int32_t float_to_int32_rn(float x) {
#ifdef USE_ROCM
// int32_max is not exactly representable as float.
// Therefore, we need to be careful and manually return int32_max on overflow.
// For symmetry, we also do the same for int32_min, even though it is exactly
// representable as float and the conversion should be exact.
static constexpr auto i32_min = std::numeric_limits<int32_t>::min();
static constexpr auto i32_min_f = static_cast<float>(i32_min);
static constexpr auto i32_max = std::numeric_limits<int32_t>::max();
static constexpr auto i32_max_f = static_cast<float>(i32_max);
// To match the rounding mode of CUDA, we use nearbyint.
// It uses the current rounding mode, which is always FE_TONEAREST on HIP.
// If that changes in the future, we may need to set the rounding mode
// explicitly, either at runtime or compile time.
float dst = std::nearbyint(x);
// saturate on the higher end.
if (dst >= i32_max_f) {
return i32_max;
}
// saturate on the lower end.
if (dst <= i32_min_f) {
return i32_min;
}
return static_cast<int32_t>(dst);
#else
// CUDA path
uint32_t dst;
asm volatile("cvt.rni.sat.s32.f32 %0, %1;" : "=r"(dst) : "f"(x));
return reinterpret_cast<const int32_t&>(dst);
#endif
}
static inline __device__ int8_t int32_to_int8(int32_t x) {
#ifdef USE_ROCM
static constexpr auto i8_min =
static_cast<int32_t>(std::numeric_limits<int8_t>::min());
static constexpr auto i8_max =
static_cast<int32_t>(std::numeric_limits<int8_t>::max());
// saturate
// See https://github.com/pytorch/pytorch/issues/127666
// See https://github.com/llvm/llvm-project/issues/95183
// hip-clang std::clamp __glibcxx_assert_fail host function when building on
// Arch/gcc14. The following replaces std::clamp usage with similar logic
// int32_t dst = std::clamp(x, i8_min, i8_max);
int32_t dst = (x < i8_min) ? i8_min : (x > i8_max) ? i8_max : x;
return static_cast<int8_t>(dst);
#else
// CUDA path
uint32_t dst;
asm volatile("cvt.sat.s8.s32 %0, %1;" : "=r"(dst) : "r"(x));
return reinterpret_cast<const int8_t&>(dst);
#endif
}
namespace vllm {
template <typename scalar_t, typename scale_t>
__global__ void static_scaled_int8_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
const scale_t* scale_ptr, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
const float scale = *scale_ptr;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
dst = float_to_int8_rn(static_cast<float>(src) / scale);
});
}
template <typename scalar_t, typename scale_t, typename azp_t>
__global__ void static_scaled_int8_azp_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
const scale_t* scale_ptr, const azp_t* azp_ptr, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
const float scale = *scale_ptr;
const azp_t azp = *azp_ptr;
const float inv_s = 1.0f / scale;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
const auto v = static_cast<float>(src) * inv_s;
dst = int32_to_int8(float_to_int32_rn(v) + azp);
});
}
template <typename scalar_t, typename scale_t>
__global__ void dynamic_scaled_int8_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
scale_t* scale_out, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
// calculate for absmax
float thread_max = 0.f;
for (int i = tid; i < hidden_size; i += stride) {
const auto v = fabsf(static_cast<float>(row_in[i]));
thread_max = fmaxf(thread_max, v);
}
using BlockReduce = cub::BlockReduce<float, 256>;
__shared__ typename BlockReduce::TempStorage tmp;
float block_max = BlockReduce(tmp).Reduce(thread_max, cub::Max{}, blockDim.x);
__shared__ float absmax;
if (tid == 0) {
absmax = block_max;
scale_out[blockIdx.x] = absmax / 127.f;
}
__syncthreads();
float inv_s = (absmax == 0.f) ? 0.f : 127.f / absmax;
// 2. quantize
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
dst = float_to_int8_rn(static_cast<float>(src) * inv_s);
});
}
// MinMax structure to hold min and max values in one go
struct MinMax {
float min, max;
__host__ __device__ MinMax()
: min(std::numeric_limits<float>::max()),
max(std::numeric_limits<float>::lowest()) {}
__host__ __device__ explicit MinMax(float v) : min(v), max(v) {}
// add a value to the MinMax
__host__ __device__ MinMax& operator+=(float v) {
min = fminf(min, v);
max = fmaxf(max, v);
return *this;
}
// merge two MinMax objects
__host__ __device__ MinMax& operator&=(const MinMax& other) {
min = fminf(min, other.min);
max = fmaxf(max, other.max);
return *this;
}
};
__host__ __device__ inline MinMax operator+(MinMax a, float v) {
return a += v;
}
__host__ __device__ inline MinMax operator&(MinMax a, const MinMax& b) {
return a &= b;
}
template <typename scalar_t, typename scale_t, typename azp_t>
__global__ void dynamic_scaled_int8_azp_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
scale_t* scale_out, azp_t* azp_out, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
// 1. calculate min & max
MinMax thread_mm;
for (int i = tid; i < hidden_size; i += stride) {
thread_mm += static_cast<float>(row_in[i]);
}
using BlockReduce = cub::BlockReduce<MinMax, 256>;
__shared__ typename BlockReduce::TempStorage tmp;
MinMax mm = BlockReduce(tmp).Reduce(
thread_mm,
[] __device__(MinMax a, const MinMax& b) {
a &= b;
return a;
},
blockDim.x);
__shared__ float scale_sh;
__shared__ azp_t azp_sh;
if (tid == 0) {
float s = (mm.max - mm.min) / 255.f;
float zp = nearbyintf(-128.f - mm.min / s); // round-to-even
scale_sh = s;
azp_sh = azp_t(zp);
scale_out[blockIdx.x] = s;
azp_out[blockIdx.x] = azp_sh;
}
__syncthreads();
const float inv_s = 1.f / scale_sh;
const azp_t azp = azp_sh;
// 2. quantize
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
const auto v = static_cast<float>(src) * inv_s;
dst = int32_to_int8(float_to_int32_rn(v) + azp);
});
}
} // namespace vllm
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
torch::Tensor const& input, // [..., hidden_size]
torch::Tensor const& scale,
std::optional<torch::Tensor> const& azp) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scale.numel() == 1);
TORCH_CHECK(!azp || azp->numel() == 1);
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 256));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "static_scaled_int8_quant_kernel", [&] {
if (!azp) {
vllm::static_scaled_int8_quant_kernel<scalar_t, float>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), hidden_size);
} else {
vllm::static_scaled_int8_azp_quant_kernel<scalar_t, float, int32_t>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(),
hidden_size);
}
});
}
void dynamic_scaled_int8_quant(
torch::Tensor& out, // [..., hidden_size]
torch::Tensor const& input, // [..., hidden_size]
torch::Tensor& scales, std::optional<torch::Tensor> const& azp) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scales.is_contiguous());
TORCH_CHECK(!azp || azp->is_contiguous());
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 256));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_scaled_int8_quant_kernel", [&] {
if (!azp) {
vllm::dynamic_scaled_int8_quant_kernel<scalar_t, float>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scales.data_ptr<float>(), hidden_size);
} else {
vllm::dynamic_scaled_int8_azp_quant_kernel<scalar_t, float, int32_t>
<<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scales.data_ptr<float>(), azp->data_ptr<int32_t>(),
hidden_size);
}
});
}
|