File size: 8,260 Bytes
1dc29e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common.h"
#include "utility.h"
namespace tensorrt_llm
{
namespace kernels
{
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp, bool Zero, bool Bias,
int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
struct WeightOnlyBatchedGemvKernelLauncher
{
static void run(const WeightOnlyParams& params, cudaStream_t stream);
};
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp, int N_PER_BLOCK,
int BATCH, int BLOCK_SIZE>
void select_zero_bias(const WeightOnlyParams& params, cudaStream_t stream)
{
if (params.zeros && params.bias)
{
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, true, true, N_PER_BLOCK, BATCH,
BLOCK_SIZE>::run(params, stream);
}
else if (params.zeros && !params.bias)
{
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, true, false, N_PER_BLOCK, BATCH,
BLOCK_SIZE>::run(params, stream);
}
else if (!params.zeros && params.bias)
{
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, false, true, N_PER_BLOCK, BATCH,
BLOCK_SIZE>::run(params, stream);
}
else
{
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, false, false, N_PER_BLOCK, BATCH,
BLOCK_SIZE>::run(params, stream);
}
}
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
void select_activation(const WeightOnlyParams& params, cudaStream_t stream)
{
switch (params.act_func_type)
{
// Currently, activation function is not called in the plugin
#if 0
case WeightOnlyActivationFunctionType::Gelu:
{
select_zero_bias<QType, WeightOnlyFlag, GeluActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
break;
}
case WeightOnlyActivationFunctionType::Relu:
{
select_zero_bias<QType, WeightOnlyFlag, ReluActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
break;
}
#endif
case WeightOnlyActivationFunctionType::Identity:
{
select_zero_bias<QType, WeightOnlyFlag, IdentityActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
break;
}
default:
{
throw std::runtime_error("Use unsupported activation");
break;
}
}
}
template <typename WeightOnlyFlag, int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
void select_quant_type(const WeightOnlyParams& params, cudaStream_t stream)
{
if (params.quant_type == WeightOnlyQuantType::Int4b)
{
select_activation<WeightOnlyQuantType::Int4b, WeightOnlyFlag, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
}
else if (params.quant_type == WeightOnlyQuantType::Int8b)
{
select_activation<WeightOnlyQuantType::Int8b, WeightOnlyFlag, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
}
else
{
throw std::runtime_error("Unknown QuantType");
}
}
template <int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
void select_groupwise_weight_only(const WeightOnlyParams& params, cudaStream_t stream)
{
if (params.weight_only_type == WeightOnlyType::GroupWise && params.group_size == 64)
{
select_quant_type<WeightOnlyGroupWise<64>, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
}
else if (params.weight_only_type == WeightOnlyType::GroupWise && params.group_size == 128)
{
select_quant_type<WeightOnlyGroupWise<128>, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
}
else
{
throw std::runtime_error("Only support groupwise weight only for gs=64/128");
}
}
void weight_only_batched_gemv_launcher(const WeightOnlyParams& params, cudaStream_t stream)
{
assert(params.act_func_type == WeightOnlyActivationFunctionType::Identity);
assert(params.weight_only_type == WeightOnlyType::GroupWise
|| (params.weight_only_type == WeightOnlyType::PerChannel && params.bias == nullptr
&& params.zeros == nullptr));
if (params.weight_only_type == WeightOnlyType::PerChannel)
{
if (params.quant_type == WeightOnlyQuantType::Int4b)
{
switch (params.m)
{
case 1:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
IdentityActivation, false, false, 1, 1, 192>::run(params, stream);
break;
}
case 2:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
IdentityActivation, false, false, 2, 2, 128>::run(params, stream);
break;
}
case 3:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
IdentityActivation, false, false, 2, 3, 256>::run(params, stream);
break;
}
case 4:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
IdentityActivation, false, false, 4, 4, 256>::run(params, stream);
break;
}
default:
{
throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
break;
}
}
}
else if (params.quant_type == WeightOnlyQuantType::Int8b)
{
switch (params.m)
{
case 1:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
IdentityActivation, false, false, 2, 1, 256>::run(params, stream);
break;
}
case 2:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
IdentityActivation, false, false, 2, 2, 256>::run(params, stream);
break;
}
case 3:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
IdentityActivation, false, false, 2, 3, 256>::run(params, stream);
break;
}
case 4:
{
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
IdentityActivation, false, false, 2, 4, 256>::run(params, stream);
break;
}
default:
{
throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
break;
}
}
}
}
else if (params.weight_only_type == WeightOnlyType::GroupWise)
{
switch (params.m)
{
case 1:
{
select_groupwise_weight_only<2, 1, 256>(params, stream);
break;
}
case 2:
{
select_groupwise_weight_only<2, 2, 256>(params, stream);
break;
}
case 3:
{
select_groupwise_weight_only<2, 3, 128>(params, stream);
break;
}
case 4:
{
select_groupwise_weight_only<2, 4, 128>(params, stream);
break;
}
default:
{
throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
break;
}
}
}
}
} // namespace kernels
} // namespace tensorrt_llm
|