File size: 8,260 Bytes
1dc29e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
 * Copyright (c) 2022-2024, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "common.h"
#include "utility.h"

namespace tensorrt_llm
{
namespace kernels
{
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp, bool Zero, bool Bias,
    int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
struct WeightOnlyBatchedGemvKernelLauncher
{
    static void run(const WeightOnlyParams& params, cudaStream_t stream);
};

template <WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp, int N_PER_BLOCK,
    int BATCH, int BLOCK_SIZE>
void select_zero_bias(const WeightOnlyParams& params, cudaStream_t stream)
{
    if (params.zeros && params.bias)
    {
        WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, true, true, N_PER_BLOCK, BATCH,
            BLOCK_SIZE>::run(params, stream);
    }
    else if (params.zeros && !params.bias)
    {
        WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, true, false, N_PER_BLOCK, BATCH,
            BLOCK_SIZE>::run(params, stream);
    }
    else if (!params.zeros && params.bias)
    {
        WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, false, true, N_PER_BLOCK, BATCH,
            BLOCK_SIZE>::run(params, stream);
    }
    else
    {
        WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, false, false, N_PER_BLOCK, BATCH,
            BLOCK_SIZE>::run(params, stream);
    }
}

template <WeightOnlyQuantType QType, typename WeightOnlyFlag, int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
void select_activation(const WeightOnlyParams& params, cudaStream_t stream)
{
    switch (params.act_func_type)
    {
        // Currently, activation function is not called in the plugin
#if 0
    case WeightOnlyActivationFunctionType::Gelu:
    {
        select_zero_bias<QType, WeightOnlyFlag, GeluActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
        break;
    }
    case WeightOnlyActivationFunctionType::Relu:
    {
        select_zero_bias<QType, WeightOnlyFlag, ReluActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
        break;
    }
#endif
    case WeightOnlyActivationFunctionType::Identity:
    {
        select_zero_bias<QType, WeightOnlyFlag, IdentityActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
        break;
    }
    default:
    {
        throw std::runtime_error("Use unsupported activation");
        break;
    }
    }
}

template <typename WeightOnlyFlag, int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
void select_quant_type(const WeightOnlyParams& params, cudaStream_t stream)
{
    if (params.quant_type == WeightOnlyQuantType::Int4b)
    {
        select_activation<WeightOnlyQuantType::Int4b, WeightOnlyFlag, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
    }
    else if (params.quant_type == WeightOnlyQuantType::Int8b)
    {
        select_activation<WeightOnlyQuantType::Int8b, WeightOnlyFlag, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
    }
    else
    {
        throw std::runtime_error("Unknown QuantType");
    }
}

template <int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
void select_groupwise_weight_only(const WeightOnlyParams& params, cudaStream_t stream)
{
    if (params.weight_only_type == WeightOnlyType::GroupWise && params.group_size == 64)
    {
        select_quant_type<WeightOnlyGroupWise<64>, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
    }
    else if (params.weight_only_type == WeightOnlyType::GroupWise && params.group_size == 128)
    {
        select_quant_type<WeightOnlyGroupWise<128>, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
    }
    else
    {
        throw std::runtime_error("Only support groupwise weight only for gs=64/128");
    }
}

void weight_only_batched_gemv_launcher(const WeightOnlyParams& params, cudaStream_t stream)
{
    assert(params.act_func_type == WeightOnlyActivationFunctionType::Identity);
    assert(params.weight_only_type == WeightOnlyType::GroupWise
        || (params.weight_only_type == WeightOnlyType::PerChannel && params.bias == nullptr
            && params.zeros == nullptr));
    if (params.weight_only_type == WeightOnlyType::PerChannel)
    {
        if (params.quant_type == WeightOnlyQuantType::Int4b)
        {
            switch (params.m)
            {
            case 1:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 1, 1, 192>::run(params, stream);
                break;
            }
            case 2:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 2, 2, 128>::run(params, stream);
                break;
            }
            case 3:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 2, 3, 256>::run(params, stream);
                break;
            }
            case 4:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 4, 4, 256>::run(params, stream);
                break;
            }
            default:
            {
                throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
                break;
            }
            }
        }
        else if (params.quant_type == WeightOnlyQuantType::Int8b)
        {
            switch (params.m)
            {
            case 1:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 2, 1, 256>::run(params, stream);
                break;
            }
            case 2:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 2, 2, 256>::run(params, stream);
                break;
            }
            case 3:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 2, 3, 256>::run(params, stream);
                break;
            }
            case 4:
            {
                WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
                    IdentityActivation, false, false, 2, 4, 256>::run(params, stream);
                break;
            }
            default:
            {
                throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
                break;
            }
            }
        }
    }
    else if (params.weight_only_type == WeightOnlyType::GroupWise)
    {
        switch (params.m)
        {
        case 1:
        {
            select_groupwise_weight_only<2, 1, 256>(params, stream);
            break;
        }
        case 2:
        {
            select_groupwise_weight_only<2, 2, 256>(params, stream);
            break;
        }
        case 3:
        {
            select_groupwise_weight_only<2, 3, 128>(params, stream);
            break;
        }
        case 4:
        {
            select_groupwise_weight_only<2, 4, 128>(params, stream);
            break;
        }
        default:
        {
            throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
            break;
        }
        }
    }
}
} // namespace kernels
} // namespace tensorrt_llm