File size: 24,034 Bytes
1dc29e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "common.h"
#include "utility.h"
namespace tensorrt_llm
{
namespace kernels
{
template <typename ActType>
struct ActTypeDetails;
template <>
struct ActTypeDetails<half>
{
using CutlassType = cutlass::half_t;
using Vec2 = half2;
__device__ __forceinline__ static Vec2 to_vec2(half v)
{
return __half2half2(v);
}
};
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) && defined(ENABLE_BF16))
template <>
struct ActTypeDetails<__nv_bfloat16>
{
using CutlassType = cutlass::bfloat16_t;
using Vec2 = __nv_bfloat162;
__device__ __forceinline__ static Vec2 to_vec2(__nv_bfloat16 v)
{
return __bfloat162bfloat162(v);
}
};
#endif
template <typename ActType, WeightOnlyQuantType QType>
struct ConverterSelector
{
static_assert(QType == WeightOnlyQuantType::Int4b || QType == WeightOnlyQuantType::Int8b);
using WeiType = std::conditional_t<QType == WeightOnlyQuantType::Int4b, cutlass::uint4b_t, uint8_t>;
static constexpr int kConvertCount = QType == WeightOnlyQuantType::Int4b ? 8 : 4;
using Converter
= cutlass::FastInterleavedAndBiasedNumericArrayConverter<typename ActTypeDetails<ActType>::CutlassType, WeiType,
kConvertCount>;
};
template <typename ActType, WeightOnlyQuantType QType>
struct WeightOnlyDetails;
template <typename ActType>
struct WeightOnlyDetails<ActType, WeightOnlyQuantType::Int4b>
{
// Every four rows of the original weights are interleaved into a row with stride of 64, so if each thread
// processes 32 elements(for int4, we can use ldg.128 to load weights), then every group of two adjacent threads
// will alternately process four different row weights
// for example
// every 256 consecutive int4 elements [256*i, 256*(i+1)-1] of row N under interleave layout,
// the first 64 are from [64*i, 64*(i+1)-1] of row 4N before interleaving,
// and the second 64 are from [64*i, 64*(i+1)-1] of row 4N+1 before interleaving, and so on.
// So if each thread loads 32 int4 elements, then the elements of each 2 adjacent threads of each 8
// consecutive threads will come from row 4N ~ 4N+3 respectively before interleaving.
static constexpr int kElemBits = 4;
static constexpr int kInterleave = 4;
static constexpr int kStride = 64;
// The index remapping here is to counteracts the effect of cutlass::permute_B_rows_for_mixed_gemm
// input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 31
// weight 0 1 8 9 16 17 24 25 2 3 10 11 18 19 26 27 4 5 12 13 20 21 28 29 6 7 14 15 22 23 30 31
static constexpr int kShuffleSize = 32;
static constexpr int kShuffleBasicTile = 2;
static constexpr int kShuffleContinous = 4;
static constexpr int kShuffleStrided = 4;
// Each warp completes the internal reduce and writes the [Batch * NPerBlock * Interleave] results to the
// corresponding address in shared memory
template <int Num, int WarpSize>
__device__ __forceinline__ static void sync(float* res, float (*sm)[Num * kInterleave])
{
#pragma unroll
for (int i = 0; i < Num; ++i)
{
res[i] += __shfl_xor_sync(~0, res[i], 16);
res[i] += __shfl_xor_sync(~0, res[i], 8);
res[i] += __shfl_xor_sync(~0, res[i], 1);
}
__syncthreads();
int warp = threadIdx.x / WarpSize, lane = threadIdx.x % WarpSize;
if (lane == 0 || lane == 2 || lane == 4 || lane == 6)
{
#pragma unroll
for (int i = 0; i < Num; ++i)
{
sm[warp][i * kInterleave + lane / 2] = res[i];
}
}
__syncthreads();
}
};
template <typename ActType>
struct WeightOnlyDetails<ActType, WeightOnlyQuantType::Int8b>
{
// Every two rows of the original weights are interleaved into a row with stride of 64, so if each thread
// processes 16 elements(for int8, we can use ldg.128 to load weights), then every group of four adjacent threads
// will alternately process two different row weights
// for example
// every 128 consecutive int8 elements [128*i, 128*(i+1)-1] of row N under interleave layout,
// the first 64 are from [64*i, 64*(i+1)-1] of row 2N before interleaving,
// and the last 64 are from [64*i, 64*(i+1)-1] of row 2N+1 before interleaving.
// So if each thread loads 16 int8 elements, then the elements of the first four and last four threads of each 8
// consecutive threads will come from row 2N and row 2N+1 respectively before interleaving.
static constexpr int kElemBits = 8;
static constexpr int kInterleave = 2;
static constexpr int kStride = 64;
// The index remapping here is to counteracts the effect of cutlass::permute_B_rows_for_mixed_gemm
// input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// weight 0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15
static constexpr int kShuffleSize = 16;
static constexpr int kShuffleBasicTile = 2;
static constexpr int kShuffleContinous = 2;
static constexpr int kShuffleStrided = 4;
// Each warp completes the internal reduce and writes the [Batch * NPerBlock * Interleave] results to the
// corresponding address in shared memory
template <int Num, int WarpSize>
__device__ __forceinline__ static void sync(float* res, float (*sm)[Num * kInterleave])
{
#pragma unroll
for (int i = 0; i < Num; ++i)
{
res[i] += __shfl_xor_sync(~0, res[i], 16);
res[i] += __shfl_xor_sync(~0, res[i], 8);
res[i] += __shfl_xor_sync(~0, res[i], 2);
res[i] += __shfl_xor_sync(~0, res[i], 1);
}
__syncthreads();
int warp = threadIdx.x / WarpSize, lane = threadIdx.x % WarpSize;
if (lane == 0 || lane == 4)
{
#pragma unroll
for (int i = 0; i < Num; ++i)
{
sm[warp][i * kInterleave + lane / 4] = res[i];
}
}
__syncthreads();
}
};
template <typename ActType, WeightOnlyQuantType QType>
struct WeightOnlyKernelDetails
{
using Layout = WeightOnlyDetails<ActType, QType>;
static constexpr int kElemBits = Layout::kElemBits;
static constexpr int kInterleave = Layout::kInterleave;
static constexpr int kStride = Layout::kStride;
static constexpr int kShuffleSize = Layout::kShuffleSize;
static constexpr int kShuffleBasicTile = Layout::kShuffleBasicTile;
static constexpr int kShuffleContinous = Layout::kShuffleContinous;
static constexpr int kShuffleStrided = Layout::kShuffleStrided;
// The rearrangement here counteracts the effect of cutlass::add_bias_and_interleave_int4/8s_inplace
// Input int8 data layout
// [elt_3 elt_1 elt_2 elt_0] (each elt occupies 8 bits)
//
// Converted fp16/bf16 data layout
// [elt_3 elt_2 elt_1 elt_0] (each elt occupies 16 bits)
// Input int8 data layout
// [elt_7 elt_5 elt_3 elt_1 elt_6 elt_4 elt_2 elt_0] (each elt occupies 4 bits)
//
// Converted fp16/bf16 data layout
// [elt_7 elt_6 elt_5 elt_4 elt_3 elt_2 elt_1 elt_0] (each elt occupies 16 bits)
static constexpr int kConvertCount = ConverterSelector<ActType, QType>::kConvertCount;
using Converter = typename ConverterSelector<ActType, QType>::Converter;
// Use ldg128 load data from global memory
static constexpr int kAccessSize = 128;
using AccessType = uint4;
static constexpr int kElemsPerByte = 8 / kElemBits;
static constexpr int kElemsPerThread = kAccessSize / kElemBits;
static constexpr int kBytePerThread = kElemsPerThread / kElemsPerByte;
static constexpr int kThreadsNumPerTile = kStride / kElemsPerThread;
static constexpr int kThreadsNumPerInterleave = kThreadsNumPerTile * kInterleave;
static constexpr int kConvertIters = kElemsPerThread / kConvertCount;
// Each thread loads 16(int8b)/32(int4b) quantized weight elements each time through ldg128
// So more times of ldg128 are needed to load the same number of fp16/bf16 activation elements.
static constexpr int kActivationElemNumPerAccess = kAccessSize / (sizeof(ActType) * 8);
static constexpr int kActivationAccessNum = kElemsPerThread / kActivationElemNumPerAccess;
};
template <typename WeightOnlyFlag>
struct WeightOnlyProperties;
template <>
struct WeightOnlyProperties<WeightOnlyPerChannel>
{
static constexpr bool kIsFineGrained = false;
static constexpr int kGroupSize = 0;
};
template <int GS>
struct WeightOnlyProperties<WeightOnlyGroupWise<GS>>
{
static constexpr bool kIsFineGrained = true;
static constexpr int kGroupSize = GS;
};
template <typename ActType, WeightOnlyQuantType QType, typename WeightOnlyFlag, bool Zero, int BlockSize>
struct WeightOnlyScaleLoader
{
using ElemType = ActType;
using Details = WeightOnlyKernelDetails<ActType, QType>;
static constexpr bool kIsFineGrained = WeightOnlyProperties<WeightOnlyFlag>::kIsFineGrained;
static constexpr int kGroupSize = WeightOnlyProperties<WeightOnlyFlag>::kGroupSize;
private:
const ElemType* _scales;
const ElemType* _zeros;
int _stride;
int _offset;
public:
__device__ __forceinline__ WeightOnlyScaleLoader(
const ElemType* scales, const ElemType* zeros, int initial_offset, int stride)
: _scales(scales)
, _zeros(zeros)
, _stride(stride)
{
_scales += initial_offset;
if constexpr (Zero)
{
_zeros += initial_offset;
}
// Calculate the k dimension index of the element processed by the current thread of layout before interleave
// Used to load scales and zeros in groupwise weight only quant
_offset = threadIdx.x / Details::kThreadsNumPerInterleave * Details::kStride
+ (threadIdx.x % Details::kThreadsNumPerTile) * Details::kElemsPerThread;
}
__device__ __forceinline__ void load(ElemType& scale, ElemType& zero, int nid)
{
int offset = nid * Details::kInterleave;
if constexpr (kIsFineGrained)
{
offset += _offset / kGroupSize * _stride;
}
scale = _scales[offset];
if constexpr (Zero)
{
zero = _zeros[offset];
}
else
{
zero = static_cast<ElemType>(0.f);
}
}
__device__ __forceinline__ void advance()
{
_offset += BlockSize * Details::kElemsPerThread / Details::kInterleave;
}
__device__ __forceinline__ int offset()
{
return _offset;
}
};
template <typename ActType, WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp,
bool Zero, bool Bias, bool ActScale, int NPerBlock, int Batch, int BlockSize>
__device__ void weight_only_batched_gemv(const uint8_t* qweight, const ActType* scales, const ActType* zeros,
const ActType* in, const ActType* act_scale, const ActType* bias, ActType* out, const int n, const int k)
{
static_assert(NPerBlock == 1 || (NPerBlock % 2 == 0));
using ActType2 = typename ActTypeDetails<ActType>::Vec2;
using Details = WeightOnlyKernelDetails<ActType, QType>;
using Converter = typename Details::Converter;
using AccType = typename Details::AccessType;
using CvtSrcType = typename Converter::source_type;
using CvtResType = typename Converter::result_type;
using ScaleLoader = WeightOnlyScaleLoader<ActType, QType, WeightOnlyFlag, Zero, BlockSize>;
extern __shared__ uint8_t shmem[];
constexpr int Interleave = Details::kInterleave;
constexpr int WarpSize = 32;
constexpr int Num = Batch * NPerBlock;
const int tid = threadIdx.x;
const int bid = blockIdx.x;
const int n_start_id = bid * NPerBlock * Interleave;
// Calculate the n-dimensional index of the data processed by the current thread in the interleave tile
const int interleave_n_id = (tid / Details::kThreadsNumPerTile) % Interleave;
qweight += n_start_id * k / Details::kElemsPerByte;
ScaleLoader scale_loader(scales, zeros, n_start_id + interleave_n_id, n);
float(*sm)[Num * Interleave] = reinterpret_cast<float(*)[Num * Interleave]>(shmem);
// In order to take advantage of hfma2, we use fp16/bf16 for accumulation within threads and fp32 for accumulation
// between threads.
ActType accumulator[Num];
for (int i = 0; i < Num; ++i)
{
accumulator[i] = static_cast<ActType>(0.f);
}
// Iteration in k dimensions
for (int local_k = tid * Details::kElemsPerThread; local_k < k * Interleave;
local_k += BlockSize * Details::kElemsPerThread)
{
ActType weights_f16[Details::kElemsPerThread * NPerBlock];
ActType scale[NPerBlock], zero[NPerBlock];
#pragma unroll
for (int idx = 0; idx < NPerBlock; ++idx)
{
// Load quantized weight and scales/zeros
uint8_t weights_quantized[Details::kBytePerThread];
load<AccType>(weights_quantized,
qweight + idx * Interleave * k / Details::kElemsPerByte + local_k / Details::kElemsPerByte);
scale_loader.load(scale[idx], zero[idx], idx);
ActType weights_vec[Details::kElemsPerThread];
#pragma unroll
for (int i = 0; i < Details::kConvertIters; ++i)
{
// Use cutlass::FastInterleavedAndBiasedNumericArrayConverter for I2F type conversion
assign<CvtResType>(weights_vec + i * Details::kConvertCount,
Converter::convert(*reinterpret_cast<CvtSrcType*>(
weights_quantized + i * Details::kConvertCount / Details::kElemsPerByte)));
}
#pragma unroll
for (int i = 0; i < Details::kShuffleContinous; ++i)
{
#pragma unroll
for (int j = 0; j < Details::kShuffleStrided; ++j)
{
// Dequantize the weights and arrange the shuffled elements back to the correct order in the
// register array
ActType2 v = *reinterpret_cast<ActType2*>(weights_vec + i * Details::kShuffleBasicTile
+ j * Details::kShuffleContinous * Details::kShuffleBasicTile);
v = __hfma2(
v, ActTypeDetails<ActType>::to_vec2(scale[idx]), ActTypeDetails<ActType>::to_vec2(zero[idx]));
weights_f16[(i * Details::kShuffleStrided * Details::kShuffleBasicTile
+ j * Details::kShuffleBasicTile + 0)
* NPerBlock
+ idx]
= v.x;
weights_f16[(i * Details::kShuffleStrided * Details::kShuffleBasicTile
+ j * Details::kShuffleBasicTile + 1)
* NPerBlock
+ idx]
= v.y;
}
}
}
ActType act_scale_v[Details::kElemsPerThread];
if constexpr (ActScale)
{
#pragma unroll
for (int idx = 0; idx < Details::kActivationAccessNum; ++idx)
{
load<AccType>(act_scale_v + idx * Details::kActivationElemNumPerAccess,
act_scale + scale_loader.offset() + idx * Details::kActivationElemNumPerAccess);
}
}
#pragma unroll
for (int b = 0; b < Batch; ++b)
{
ActType in_v[Details::kElemsPerThread];
#pragma unroll
for (int idx = 0; idx < Details::kActivationAccessNum; ++idx)
{
// load activation elements
load<AccType>(in_v + idx * Details::kActivationElemNumPerAccess,
in + b * k + scale_loader.offset() + idx * Details::kActivationElemNumPerAccess);
if constexpr (ActScale)
{
#pragma unroll
for (int i = 0; i < Details::kActivationElemNumPerAccess; i += 2)
{
*reinterpret_cast<ActType2*>(in_v + idx * Details::kActivationElemNumPerAccess + i) = __hmul2(
*reinterpret_cast<ActType2*>(in_v + idx * Details::kActivationElemNumPerAccess + i),
*reinterpret_cast<ActType2*>(act_scale_v + idx * Details::kActivationElemNumPerAccess + i));
}
}
}
// Perform vector inner product and accumulate
if constexpr (NPerBlock == 1)
{
ActType2 v = ActTypeDetails<ActType>::to_vec2(static_cast<ActType>(0.f));
#pragma unroll
for (int y = 0; y < Details::kElemsPerThread; y += 2)
{
v = __hfma2(
*reinterpret_cast<ActType2*>(weights_f16 + y), *reinterpret_cast<ActType2*>(in_v + y), v);
}
accumulator[b] += __hadd(v.x, v.y);
}
else
{
#pragma unroll
for (int x = 0; x < NPerBlock / 2; ++x)
{
#pragma unroll
for (int y = 0; y < Details::kElemsPerThread; ++y)
{
*reinterpret_cast<ActType2*>(accumulator + b * NPerBlock + x * 2)
= __hfma2(*reinterpret_cast<ActType2*>(weights_f16 + y * NPerBlock + x * 2),
ActTypeDetails<ActType>::to_vec2(in_v[y]),
*reinterpret_cast<ActType2*>(accumulator + b * NPerBlock + x * 2));
}
}
}
}
scale_loader.advance();
}
float reses[Num];
#pragma unroll
for (int i = 0; i < Num; ++i)
{
reses[i] = static_cast<float>(accumulator[i]);
}
// Each warp completes the internal reduce and writes the [Batch * NPerBlock * Interleave] results to the
// corresponding address in shared memory
Details::Layout::sync<Num, WarpSize>(reses, sm);
// Each thread is responsible for the accumulation and store to global memory of one element
for (int i = tid; i < Num * Interleave; i += BlockSize)
{
int nid = i % (NPerBlock * Interleave);
float v = 0.f;
for (int j = 0; j < BlockSize / WarpSize; ++j)
{
v += sm[j][i];
}
float bias_v = 0.f;
if constexpr (Bias)
{
bias_v = static_cast<float>(bias[n_start_id + nid]);
}
int b = i / NPerBlock / Interleave;
out[b * n + n_start_id + nid] = static_cast<ActType>(ActOp<float>::apply(v + bias_v));
}
}
template <typename ActType, WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp,
bool Zero, bool Bias, bool ActScale, int NPerBlock, int Batch, int BlockSize>
__global__ void weight_only_batched_gemv_wrapper(const uint8_t* qweight, const ActType* scales, const ActType* zeros,
const ActType* in, const ActType* act_scale, const ActType* bias, ActType* out, const int n, const int k)
{
if constexpr (std::is_same_v<ActType, half>)
{
weight_only_batched_gemv<ActType, QType, WeightOnlyFlag, ActOp, Zero, Bias, ActScale, NPerBlock, Batch,
BlockSize>(qweight, scales, zeros, in, act_scale, bias, out, n, k);
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) && defined(ENABLE_BF16))
else if (std::is_same_v<ActType, nv_bfloat16>)
{
weight_only_batched_gemv<ActType, QType, WeightOnlyFlag, ActOp, Zero, Bias, ActScale, NPerBlock, Batch,
BlockSize>(qweight, scales, zeros, in, act_scale, bias, out, n, k);
}
#endif
}
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp, bool Zero, bool Bias,
int NPerBlock, int Batch, int BlockSize>
struct WeightOnlyBatchedGemvKernelLauncher
{
static void run(const WeightOnlyParams& params, cudaStream_t stream)
{
if (params.act_type == WeightOnlyActivationType::FP16)
{
constexpr int kInterleave = WeightOnlyDetails<half, QType>::kInterleave;
dim3 grid(params.n / NPerBlock / kInterleave);
dim3 block(BlockSize);
int size = sizeof(float) * BlockSize / 32 * Batch * NPerBlock * kInterleave;
if (params.act_scale != nullptr)
{
weight_only_batched_gemv_wrapper<half, QType, WeightOnlyFlag, ActOp, Zero, Bias, true, NPerBlock, Batch,
BlockSize><<<grid, block, size, stream>>>(params.qweight,
reinterpret_cast<const half*>(params.scales), reinterpret_cast<const half*>(params.zeros),
reinterpret_cast<const half*>(params.in), reinterpret_cast<const half*>(params.act_scale),
reinterpret_cast<const half*>(params.bias), reinterpret_cast<half*>(params.out), params.n,
params.k);
}
else
{
weight_only_batched_gemv_wrapper<half, QType, WeightOnlyFlag, ActOp, Zero, Bias, false, NPerBlock,
Batch, BlockSize><<<grid, block, size, stream>>>(params.qweight,
reinterpret_cast<const half*>(params.scales), reinterpret_cast<const half*>(params.zeros),
reinterpret_cast<const half*>(params.in), reinterpret_cast<const half*>(params.act_scale),
reinterpret_cast<const half*>(params.bias), reinterpret_cast<half*>(params.out), params.n,
params.k);
}
}
#if defined(ENABLE_BF16)
else if (params.act_type == WeightOnlyActivationType::BF16)
{
constexpr int kInterleave = WeightOnlyDetails<nv_bfloat16, QType>::kInterleave;
dim3 grid(params.n / NPerBlock / kInterleave);
dim3 block(BlockSize);
int size = sizeof(float) * BlockSize / 32 * Batch * NPerBlock * kInterleave;
if (params.act_scale != nullptr)
{
weight_only_batched_gemv_wrapper<__nv_bfloat16, QType, WeightOnlyFlag, ActOp, Zero, Bias, true,
NPerBlock, Batch, BlockSize><<<grid, block, size, stream>>>(params.qweight,
reinterpret_cast<const __nv_bfloat16*>(params.scales),
reinterpret_cast<const __nv_bfloat16*>(params.zeros),
reinterpret_cast<const __nv_bfloat16*>(params.in),
reinterpret_cast<const __nv_bfloat16*>(params.act_scale),
reinterpret_cast<const __nv_bfloat16*>(params.bias), reinterpret_cast<__nv_bfloat16*>(params.out),
params.n, params.k);
}
else
{
weight_only_batched_gemv_wrapper<__nv_bfloat16, QType, WeightOnlyFlag, ActOp, Zero, Bias, false,
NPerBlock, Batch, BlockSize><<<grid, block, size, stream>>>(params.qweight,
reinterpret_cast<const __nv_bfloat16*>(params.scales),
reinterpret_cast<const __nv_bfloat16*>(params.zeros),
reinterpret_cast<const __nv_bfloat16*>(params.in),
reinterpret_cast<const __nv_bfloat16*>(params.act_scale),
reinterpret_cast<const __nv_bfloat16*>(params.bias), reinterpret_cast<__nv_bfloat16*>(params.out),
params.n, params.k);
}
}
#endif
}
};
} // namespace kernels
} // namespace tensorrt_llm
|