File size: 9,423 Bytes
1dc29e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cutlass_heuristic.h"
#include "cutlass/gemm/gemm.h"
#include <cuda_runtime_api.h>
#include <vector>
#include <stdexcept>
namespace fastertransformer {
struct TileShape {
int m;
int n;
};
TileShape get_cta_shape_for_config(CutlassTileConfig tile_config)
{
switch (tile_config) {
case CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64:
return TileShape{32, 128};
case CutlassTileConfig::CtaShape64x128x64_WarpShape32x64x64:
case CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64:
return TileShape{64, 128};
case CutlassTileConfig::CtaShape128x128x8_WarpShape64x64x8:
case CutlassTileConfig::CtaShape128x128x64_WarpShape64x32x64:
case CutlassTileConfig::CtaShape128x128x64_WarpShape128x32x64:
return TileShape{128, 128};
default:
throw std::runtime_error("[FT Error][get_grid_shape_for_config] Invalid config");
}
}
bool is_valid_split_k_factor(const int64_t m,
const int64_t n,
const int64_t k,
const TileShape tile_shape,
const int split_k_factor,
const size_t workspace_bytes,
const bool is_weight_only)
{
// All tile sizes have a k_tile of 64.
static constexpr int k_tile = 64;
// For weight-only quant, we need k and k_elements_per_split to be a multiple of cta_k
if (is_weight_only) {
if ((k % k_tile) != 0) {
return false;
}
if ((k % split_k_factor) != 0) {
return false;
}
const int k_elements_per_split = k / split_k_factor;
if ((k_elements_per_split % k_tile) != 0) {
return false;
}
}
// Check that the workspace has sufficient space for this split-k factor
const int ctas_in_m_dim = (m + tile_shape.m - 1) / tile_shape.m;
const int ctas_in_n_dim = (n + tile_shape.n - 1) / tile_shape.n;
const size_t required_ws_bytes = split_k_factor == 1 ? 0 : sizeof(int) * ctas_in_m_dim * ctas_in_n_dim;
if (required_ws_bytes > workspace_bytes) {
return false;
}
return true;
}
std::vector<CutlassTileConfig> get_candidate_tiles(const bool is_weight_only, const bool simt_configs_only)
{
std::vector<CutlassTileConfig> simt_configs{CutlassTileConfig::CtaShape128x128x8_WarpShape64x64x8};
std::vector<CutlassTileConfig> square_configs{CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
CutlassTileConfig::CtaShape64x128x64_WarpShape32x64x64,
CutlassTileConfig::CtaShape128x128x64_WarpShape64x32x64};
std::vector<CutlassTileConfig> quant_B_configs{CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64,
CutlassTileConfig::CtaShape128x128x64_WarpShape128x32x64};
const std::vector<CutlassTileConfig> allowed_configs = is_weight_only ? quant_B_configs : square_configs;
return simt_configs_only ? simt_configs : allowed_configs;
}
std::vector<CutlassGemmConfig> get_candidate_configs(int sm, const bool is_weight_only, const bool simt_configs_only)
{
std::vector<CutlassTileConfig> tiles = get_candidate_tiles(is_weight_only, simt_configs_only);
std::vector<CutlassGemmConfig> candidate_configs;
const int min_stages = 2;
const int max_stages = sm >= 80 ? 4 : 2;
for (const auto& tile_config : tiles) {
for (int stages = min_stages; stages <= max_stages; ++stages) {
CutlassGemmConfig config{tile_config, SplitKStyle::NO_SPLIT_K, 1, stages};
candidate_configs.push_back(config);
}
}
return candidate_configs;
}
CutlassGemmConfig estimate_best_config_from_occupancies(const std::vector<CutlassGemmConfig>& candidate_configs,
const std::vector<int>& occupancies,
const int64_t m,
const int64_t n,
const int64_t k,
const int64_t num_experts,
const int split_k_limit,
const size_t workspace_bytes,
const int multi_processor_count,
const int is_weight_only)
{
if (occupancies.size() != candidate_configs.size()) {
throw std::runtime_error("[FT Error][estimate_best_config_from_occupancies] occpancies and "
"candidate configs vectors must have equal length.");
}
CutlassGemmConfig best_config;
// Score will be [0, 1]. The objective is to minimize this score.
// It represents the fraction of SM resources unused in the last wave.
float config_score = 1.0f;
int config_waves = INT_MAX;
int current_m_tile = 0;
const int max_split_k = n >= multi_processor_count * 256 ? 1 : split_k_limit;
for (size_t ii = 0; ii < candidate_configs.size(); ++ii) {
CutlassGemmConfig candidate_config = candidate_configs[ii];
TileShape tile_shape = get_cta_shape_for_config(candidate_config.tile_config);
int occupancy = occupancies[ii];
if (occupancy == 0) {
continue;
}
// Keep small tile sizes when possible.
if (best_config.tile_config != CutlassTileConfig::ChooseWithHeuristic && m < current_m_tile
&& current_m_tile < tile_shape.m) {
continue;
}
const int ctas_in_m_dim = (m + tile_shape.m - 1) / tile_shape.m;
const int ctas_in_n_dim = (n + tile_shape.n - 1) / tile_shape.n;
for (int split_k_factor = 1; split_k_factor <= max_split_k; ++split_k_factor) {
if (is_valid_split_k_factor(m, n, k, tile_shape, split_k_factor, workspace_bytes, is_weight_only)) {
const int ctas_per_wave = occupancy * multi_processor_count;
const int ctas_for_problem = ctas_in_m_dim * ctas_in_n_dim * split_k_factor;
const int num_waves_total = (ctas_for_problem + ctas_per_wave - 1) / ctas_per_wave;
const float num_waves_fractional = ctas_for_problem / float(ctas_per_wave);
const float current_score = float(num_waves_total) - num_waves_fractional;
const float score_slack = 0.1f;
if (current_score < config_score
|| ((config_waves > num_waves_total) && (current_score < config_score + score_slack))) {
config_score = current_score;
config_waves = num_waves_total;
SplitKStyle split_style =
split_k_factor > 1 ? SplitKStyle::SPLIT_K_SERIAL : SplitKStyle::NO_SPLIT_K;
best_config = CutlassGemmConfig{
candidate_config.tile_config, split_style, split_k_factor, candidate_config.stages};
current_m_tile = tile_shape.m;
}
else if (current_score == config_score
&& (best_config.stages < candidate_config.stages || split_k_factor < best_config.split_k_factor
|| current_m_tile < tile_shape.m)) {
// Prefer deeper pipeline or smaller split-k
SplitKStyle split_style =
split_k_factor > 1 ? SplitKStyle::SPLIT_K_SERIAL : SplitKStyle::NO_SPLIT_K;
best_config = CutlassGemmConfig{
candidate_config.tile_config, split_style, split_k_factor, candidate_config.stages};
current_m_tile = tile_shape.m;
config_waves = num_waves_total;
}
}
}
}
if (best_config.tile_config == CutlassTileConfig::ChooseWithHeuristic) {
throw std::runtime_error("[FT Error] Heurisitc failed to find a valid config.");
}
return best_config;
}
} // namespace fastertransformer
|