File size: 9,423 Bytes
1dc29e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "cutlass_heuristic.h"
#include "cutlass/gemm/gemm.h"
#include <cuda_runtime_api.h>

#include <vector>
#include <stdexcept>

namespace fastertransformer {

struct TileShape {
    int m;
    int n;
};

TileShape get_cta_shape_for_config(CutlassTileConfig tile_config)
{
    switch (tile_config) {
        case CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64:
            return TileShape{32, 128};
        case CutlassTileConfig::CtaShape64x128x64_WarpShape32x64x64:
        case CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64:
            return TileShape{64, 128};
        case CutlassTileConfig::CtaShape128x128x8_WarpShape64x64x8:
        case CutlassTileConfig::CtaShape128x128x64_WarpShape64x32x64:
        case CutlassTileConfig::CtaShape128x128x64_WarpShape128x32x64:
            return TileShape{128, 128};
        default:
            throw std::runtime_error("[FT Error][get_grid_shape_for_config] Invalid config");
    }
}

bool is_valid_split_k_factor(const int64_t   m,
                             const int64_t   n,
                             const int64_t   k,
                             const TileShape tile_shape,
                             const int       split_k_factor,
                             const size_t    workspace_bytes,
                             const bool      is_weight_only)
{

    // All tile sizes have a k_tile of 64.
    static constexpr int k_tile = 64;

    // For weight-only quant, we need k and k_elements_per_split to be a multiple of cta_k
    if (is_weight_only) {
        if ((k % k_tile) != 0) {
            return false;
        }

        if ((k % split_k_factor) != 0) {
            return false;
        }

        const int k_elements_per_split = k / split_k_factor;
        if ((k_elements_per_split % k_tile) != 0) {
            return false;
        }
    }

    // Check that the workspace has sufficient space for this split-k factor
    const int ctas_in_m_dim     = (m + tile_shape.m - 1) / tile_shape.m;
    const int ctas_in_n_dim     = (n + tile_shape.n - 1) / tile_shape.n;
    const size_t required_ws_bytes = split_k_factor == 1 ? 0 : sizeof(int) * ctas_in_m_dim * ctas_in_n_dim;

    if (required_ws_bytes > workspace_bytes) {
        return false;
    }

    return true;
}

std::vector<CutlassTileConfig> get_candidate_tiles(const bool is_weight_only, const bool simt_configs_only)
{

    std::vector<CutlassTileConfig> simt_configs{CutlassTileConfig::CtaShape128x128x8_WarpShape64x64x8};

    std::vector<CutlassTileConfig> square_configs{CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
                                                  CutlassTileConfig::CtaShape64x128x64_WarpShape32x64x64,
                                                  CutlassTileConfig::CtaShape128x128x64_WarpShape64x32x64};

    std::vector<CutlassTileConfig> quant_B_configs{CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
                                                   CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64,
                                                   CutlassTileConfig::CtaShape128x128x64_WarpShape128x32x64};

    const std::vector<CutlassTileConfig> allowed_configs = is_weight_only ? quant_B_configs : square_configs;
    return simt_configs_only ? simt_configs : allowed_configs;
}

std::vector<CutlassGemmConfig> get_candidate_configs(int sm, const bool is_weight_only, const bool simt_configs_only)
{
    std::vector<CutlassTileConfig> tiles = get_candidate_tiles(is_weight_only, simt_configs_only);

    std::vector<CutlassGemmConfig> candidate_configs;
    const int                      min_stages = 2;
    const int                      max_stages = sm >= 80 ? 4 : 2;

    for (const auto& tile_config : tiles) {
        for (int stages = min_stages; stages <= max_stages; ++stages) {
            CutlassGemmConfig config{tile_config, SplitKStyle::NO_SPLIT_K, 1, stages};
            candidate_configs.push_back(config);
        }
    }

    return candidate_configs;
}

CutlassGemmConfig estimate_best_config_from_occupancies(const std::vector<CutlassGemmConfig>& candidate_configs,
                                                        const std::vector<int>&               occupancies,
                                                        const int64_t                         m,
                                                        const int64_t                         n,
                                                        const int64_t                         k,
                                                        const int64_t                         num_experts,
                                                        const int                             split_k_limit,
                                                        const size_t                          workspace_bytes,
                                                        const int                             multi_processor_count,
                                                        const int                             is_weight_only)
{

    if (occupancies.size() != candidate_configs.size()) {
        throw std::runtime_error("[FT Error][estimate_best_config_from_occupancies] occpancies and "
                                 "candidate configs vectors must have equal length.");
    }

    CutlassGemmConfig best_config;
    // Score will be [0, 1]. The objective is to minimize this score.
    // It represents the fraction of SM resources unused in the last wave.
    float config_score   = 1.0f;
    int   config_waves   = INT_MAX;
    int   current_m_tile = 0;

    const int max_split_k = n >= multi_processor_count * 256 ? 1 : split_k_limit;
    for (size_t ii = 0; ii < candidate_configs.size(); ++ii) {
        CutlassGemmConfig candidate_config = candidate_configs[ii];
        TileShape         tile_shape       = get_cta_shape_for_config(candidate_config.tile_config);
        int               occupancy        = occupancies[ii];

        if (occupancy == 0) {
            continue;
        }

        // Keep small tile sizes when possible.
        if (best_config.tile_config != CutlassTileConfig::ChooseWithHeuristic && m < current_m_tile
            && current_m_tile < tile_shape.m) {
            continue;
        }

        const int ctas_in_m_dim = (m + tile_shape.m - 1) / tile_shape.m;
        const int ctas_in_n_dim = (n + tile_shape.n - 1) / tile_shape.n;

        for (int split_k_factor = 1; split_k_factor <= max_split_k; ++split_k_factor) {
            if (is_valid_split_k_factor(m, n, k, tile_shape, split_k_factor, workspace_bytes, is_weight_only)) {
                const int ctas_per_wave    = occupancy * multi_processor_count;
                const int ctas_for_problem = ctas_in_m_dim * ctas_in_n_dim * split_k_factor;

                const int   num_waves_total      = (ctas_for_problem + ctas_per_wave - 1) / ctas_per_wave;
                const float num_waves_fractional = ctas_for_problem / float(ctas_per_wave);
                const float current_score        = float(num_waves_total) - num_waves_fractional;

                const float score_slack = 0.1f;
                if (current_score < config_score
                    || ((config_waves > num_waves_total) && (current_score < config_score + score_slack))) {
                    config_score = current_score;
                    config_waves = num_waves_total;
                    SplitKStyle split_style =
                        split_k_factor > 1 ? SplitKStyle::SPLIT_K_SERIAL : SplitKStyle::NO_SPLIT_K;
                    best_config = CutlassGemmConfig{
                        candidate_config.tile_config, split_style, split_k_factor, candidate_config.stages};
                    current_m_tile = tile_shape.m;
                }
                else if (current_score == config_score
                         && (best_config.stages < candidate_config.stages || split_k_factor < best_config.split_k_factor
                             || current_m_tile < tile_shape.m)) {
                    // Prefer deeper pipeline or smaller split-k
                    SplitKStyle split_style =
                        split_k_factor > 1 ? SplitKStyle::SPLIT_K_SERIAL : SplitKStyle::NO_SPLIT_K;
                    best_config = CutlassGemmConfig{
                        candidate_config.tile_config, split_style, split_k_factor, candidate_config.stages};
                    current_m_tile = tile_shape.m;
                    config_waves   = num_waves_total;
                }
            }
        }
    }

    if (best_config.tile_config == CutlassTileConfig::ChooseWithHeuristic) {
        throw std::runtime_error("[FT Error] Heurisitc failed to find a valid config.");
    }

    return best_config;
}

}  // namespace fastertransformer