File size: 13,367 Bytes
132e594
 
 
3dcba92
132e594
 
3dcba92
132e594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import random
from typing import List, Optional, Tuple

import paged_attention as ops
import pytest
import torch
from paged_attention.platforms import current_platform

from .allclose_default import get_default_atol, get_default_rtol
from .utils import get_max_shared_memory_bytes, opcheck

FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
# - 512 as a buffer
MAX_SEQ_LEN = get_max_shared_memory_bytes() // FLOAT32_BYTES - 512
# There may not be enough gpu memory due to large NUM_BLOCKS.
# Reduce NUM_BLOCKS when it happens.
NUM_BLOCKS = 4321  # Arbitrary values for testing
PARTITION_SIZE = 512
# flshattF and tritonflashattF supported: {torch.float16, torch.bfloat16}
DTYPES = (
    [torch.half, torch.bfloat16, torch.float]
    if not current_platform.is_rocm()
    else [torch.half, torch.bfloat16]
)
NUM_GEN_SEQS = [7]  # Arbitrary values for testing
NUM_PREFILL_SEQS = [3]  # Arbitrary values for testing
NUM_HEADS = [(40, 40), (64, 8)]  # Arbitrary values for testing

# This should be sync with get_supported_head_sizes() in
# vllm.attention.ops.paged_attn.PagedAttention
HEAD_SIZES = [32, 64, 80, 96, 112, 120, 128, 192, 256]

BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]
KV_CACHE_DTYPE = ["auto", "fp8"]
SEEDS = [0]
CUDA_DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]


def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
    if attn_mask is not None:
        attn_weights = attn_weights + attn_mask.float()
    attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
    out = torch.einsum("hqk,khd->qhd", attn_weights, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    num_queries_per_kv: int,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    seq_lens: torch.Tensor,
    scale: float,
    alibi_slopes: Optional[torch.Tensor],
) -> None:
    num_query_heads = query.shape[1]
    num_kv_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]
    num_seqs = query.shape[0]

    block_tables_lst = block_tables.cpu().tolist()
    seq_lens_lst = seq_lens.cpu().tolist()
    for i in range(num_seqs):
        q = query[i].unsqueeze(0)
        block_table = block_tables_lst[i]
        seq_len = int(seq_lens_lst[i])

        keys_lst: List[torch.Tensor] = []
        values_lst: List[torch.Tensor] = []
        for j in range(seq_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_kv_heads, head_size)
            keys_lst.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values_lst.append(v)
        keys = torch.stack(keys_lst, dim=0)
        values = torch.stack(values_lst, dim=0)
        if num_queries_per_kv > 1:
            # Handle MQA and GQA
            keys = torch.repeat_interleave(keys, num_queries_per_kv, dim=1)
            values = torch.repeat_interleave(values, num_queries_per_kv, dim=1)

        alibi_bias = None
        if alibi_slopes is not None:
            # Create the ALiBi bias used in the paged attention kernel.
            position_ids = torch.arange(seq_len).int()
            alibi_bias = (position_ids - seq_len + 1).float()
            alibi_bias = alibi_slopes.view(-1, 1, 1) * alibi_bias.view(1, 1, -1)

        out = ref_masked_attention(q, keys, values, scale, alibi_bias)
        out = out.view(num_query_heads, head_size)
        output[i].copy_(out, non_blocking=True)


@pytest.mark.parametrize(
    "version", ["v1", "v2"] if not current_platform.is_rocm() else ["v1", "v2", "rocm"]
)
@pytest.mark.parametrize("num_seqs", NUM_GEN_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("use_alibi", USE_ALIBI)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_paged_attention(
    kv_cache_factory,
    version: str,
    num_seqs: int,
    num_heads: Tuple[int, int],
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    kv_cache_dtype: str,
    seed: int,
    device: str,
) -> None:
    if (kv_cache_dtype == "fp8" and head_size % 16) or (
        version == "rocm" and head_size not in (64, 128)
    ):
        pytest.skip()

    current_platform.seed_everything(seed)
    torch.set_default_device(device)
    scale = float(1.0 / (head_size**0.5))
    num_query_heads, num_kv_heads = num_heads
    query = torch.empty(num_seqs, num_query_heads, head_size, dtype=dtype)
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    num_queries_per_kv = num_query_heads // num_kv_heads
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads, dtype=torch.float)

    seq_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
    seq_lens[-1] = MAX_SEQ_LEN
    max_seq_len = max(seq_lens)
    seq_lens = torch.tensor(seq_lens, dtype=torch.int)

    # Create the block tables.
    max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
    block_tables_lst: List[List[int]] = []
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1) for _ in range(max_num_blocks_per_seq)
        ]
        block_tables_lst.append(block_table)

    block_tables = torch.tensor(block_tables_lst, dtype=torch.int)

    # Create the KV caches.
    key_caches, value_caches = kv_cache_factory(
        NUM_BLOCKS,
        block_size,
        1,
        num_kv_heads,
        head_size,
        kv_cache_dtype,
        dtype,
        seed,
        device,
    )
    key_cache, value_cache = key_caches[0], value_caches[0]

    # Using default kv_scale
    k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)

    # Call the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v1":
        ops.paged_attention_v1(
            output,
            query,
            key_cache,
            value_cache,
            num_kv_heads,
            scale,
            block_tables,
            seq_lens,
            block_size,
            max_seq_len,
            alibi_slopes,
            kv_cache_dtype,
            k_scale,
            v_scale,
        )

        opcheck(
            ops.ops.paged_attention_v1,
            (
                output,
                query,
                key_cache,
                value_cache,
                num_kv_heads,
                scale,
                block_tables,
                seq_lens,
                block_size,
                max_seq_len,
                alibi_slopes,
                kv_cache_dtype,
                k_scale,
                v_scale,
                0,
                0,
                0,
                64,
                0,
            ),
            cond=(head_size == HEAD_SIZES[0] and block_size == BLOCK_SIZES[0]),
        )

    elif version in ("v2", "rocm"):
        num_partitions = (max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE
        assert PARTITION_SIZE % block_size == 0
        num_seqs, num_heads, head_size = output.shape
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, num_partitions, head_size),
            dtype=output.dtype,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, num_partitions),
            dtype=torch.float32,
        )
        max_logits = torch.empty_like(exp_sums)
        if version == "v2":
            ops.paged_attention_v2(
                output,
                exp_sums,
                max_logits,
                tmp_output,
                query,
                key_cache,
                value_cache,
                num_kv_heads,
                scale,
                block_tables,
                seq_lens,
                block_size,
                max_seq_len,
                alibi_slopes,
                kv_cache_dtype,
                k_scale,
                v_scale,
            )

            opcheck(
                ops.ops.paged_attention_v2,
                (
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
                    k_scale,
                    v_scale,
                    0,
                    0,
                    0,
                    64,
                    0,
                ),
                cond=(head_size == HEAD_SIZES[0] and block_size == BLOCK_SIZES[0]),
            )

        else:
            ops.paged_attention_rocm(
                output,
                exp_sums,
                max_logits,
                tmp_output,
                query,
                key_cache,
                value_cache,
                num_kv_heads,
                scale,
                block_tables,
                seq_lens,
                block_size,
                max_seq_len,
                alibi_slopes,
                kv_cache_dtype,
                k_scale,
                v_scale,
            )

            opcheck(
                torch.ops._rocm_C.paged_attention,
                (
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
                    k_scale,
                    v_scale,
                ),
                cond=(head_size == HEAD_SIZES[0] and block_size == BLOCK_SIZES[0]),
            )

    else:
        raise AssertionError(f"Unknown version: {version}")

    # Run the reference implementation.
    if kv_cache_dtype == "fp8":
        # Convert cache data back to dtype.
        x = 16 // torch.tensor([], dtype=dtype).element_size()
        key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x, block_size, x)
        dequantized_key_cache = torch.empty(
            size=key_cache_shape, dtype=dtype, device=device
        )
        ops.convert_fp8(dequantized_key_cache, key_cache)
        key_cache = dequantized_key_cache

        value_cache_shape = value_cache.shape
        dequantized_value_cache = torch.empty(
            size=value_cache_shape, dtype=dtype, device=device
        )
        ops.convert_fp8(dequantized_value_cache, value_cache)
        value_cache = dequantized_value_cache

    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        num_queries_per_kv,
        key_cache,
        value_cache,
        block_tables,
        seq_lens,
        scale,
        alibi_slopes,
    )

    # NOTE(woosuk): Due to the kernel-level differences in the two
    # implementations, there is a small numerical difference in the two
    # outputs. Thus, we use a relaxed tolerance for the test.
    atol = get_default_atol(output) if current_platform.is_rocm() else 1e-3
    rtol = get_default_rtol(output) if current_platform.is_rocm() else 1e-5

    # NOTE(zhaoyang): FP8 KV Cache will introduce quantization error,
    # so we use a relaxed tolerance for the test.
    atol, rtol = 1e-3, 1e-5
    if kv_cache_dtype == "fp8":
        atol, rtol = 1e-2, 1e-5
    torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol)


def ref_multi_query_kv_attention(
    cu_seq_lens: List[int],
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    dtype: torch.dtype,
) -> torch.Tensor:
    num_seqs = len(cu_seq_lens) - 1
    ref_outputs: List[torch.Tensor] = []
    for i in range(num_seqs):
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        seq_len = end_idx - start_idx

        # Create attention mask.
        attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype), diagonal=1)
        attn_mask = attn_mask * torch.finfo(dtype).min
        attn_mask = attn_mask.to(dtype=dtype)

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)

    return torch.cat(ref_outputs, dim=0)