kernel
danieldk HF Staff commited on
Commit
f1e9385
Β·
1 Parent(s): 91deba9
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. build/torch24-cxx11-cu118-x86_64-linux/moe/__init__.py +0 -47
  2. build/{torch25-cxx11-cu118-x86_64-linux/moe/_moe_nskz7v224zllw.abi3.so β†’ torch24-cxx11-cu118-x86_64-linux/moe/_moe_w3lspmuramohg.abi3.so} +1 -1
  3. build/torch24-cxx11-cu118-x86_64-linux/moe/_ops.py +3 -3
  4. build/torch24-cxx11-cu118-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  5. build/torch24-cxx11-cu118-x86_64-linux/moe/fused_moe.py +2 -2
  6. build/torch24-cxx11-cu121-x86_64-linux/moe/__init__.py +0 -47
  7. build/{torch25-cxx11-cu121-x86_64-linux/moe/_moe_t32bhzwhzero6.abi3.so β†’ torch24-cxx11-cu121-x86_64-linux/moe/_moe_xztwj3vfii47s.abi3.so} +1 -1
  8. build/torch24-cxx11-cu121-x86_64-linux/moe/_ops.py +3 -3
  9. build/torch24-cxx11-cu121-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  10. build/torch24-cxx11-cu121-x86_64-linux/moe/fused_moe.py +2 -2
  11. build/torch24-cxx11-cu124-x86_64-linux/moe/__init__.py +0 -47
  12. build/{torch25-cxx11-cu124-x86_64-linux/moe/_moe_pgljmg5ek5k4e.abi3.so β†’ torch24-cxx11-cu124-x86_64-linux/moe/_moe_zjfwjryvbxcss.abi3.so} +1 -1
  13. build/torch24-cxx11-cu124-x86_64-linux/moe/_ops.py +3 -3
  14. build/torch24-cxx11-cu124-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  15. build/torch24-cxx11-cu124-x86_64-linux/moe/fused_moe.py +2 -2
  16. build/torch24-cxx98-cu118-x86_64-linux/moe/__init__.py +0 -47
  17. build/{torch24-cxx11-cu118-x86_64-linux/moe/_moe_wtjc356yopxde.abi3.so β†’ torch24-cxx98-cu118-x86_64-linux/moe/_moe_vjujc4o4hplak.abi3.so} +2 -2
  18. build/torch24-cxx98-cu118-x86_64-linux/moe/_ops.py +3 -3
  19. build/torch24-cxx98-cu118-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  20. build/torch24-cxx98-cu118-x86_64-linux/moe/fused_moe.py +2 -2
  21. build/torch24-cxx98-cu121-x86_64-linux/moe/__init__.py +0 -47
  22. build/{torch25-cxx98-cu121-x86_64-linux/moe/_moe_plblvprmwqffy.abi3.so β†’ torch24-cxx98-cu121-x86_64-linux/moe/_moe_bjua6v5mj6njy.abi3.so} +1 -1
  23. build/torch24-cxx98-cu121-x86_64-linux/moe/_moe_hrq7opevcb4ug.abi3.so +0 -3
  24. build/torch24-cxx98-cu121-x86_64-linux/moe/_ops.py +3 -3
  25. build/torch24-cxx98-cu121-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  26. build/torch24-cxx98-cu121-x86_64-linux/moe/fused_moe.py +2 -2
  27. build/torch24-cxx98-cu124-x86_64-linux/moe/__init__.py +0 -47
  28. build/{torch25-cxx98-cu124-x86_64-linux/moe/_moe_k6bmwmtgkqymw.abi3.so β†’ torch24-cxx98-cu124-x86_64-linux/moe/_moe_ajhcvhc2njy6q.abi3.so} +1 -1
  29. build/torch24-cxx98-cu124-x86_64-linux/moe/_ops.py +3 -3
  30. build/torch24-cxx98-cu124-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  31. build/torch24-cxx98-cu124-x86_64-linux/moe/fused_moe.py +2 -2
  32. build/torch25-cxx11-cu118-x86_64-linux/moe/__init__.py +0 -47
  33. build/{torch24-cxx11-cu121-x86_64-linux/moe/_moe_fidhfyl4jgbje.abi3.so β†’ torch25-cxx11-cu118-x86_64-linux/moe/_moe_wbafjrt24mw7y.abi3.so} +2 -2
  34. build/torch25-cxx11-cu118-x86_64-linux/moe/_ops.py +3 -3
  35. build/torch25-cxx11-cu118-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  36. build/torch25-cxx11-cu118-x86_64-linux/moe/fused_moe.py +2 -2
  37. build/torch25-cxx11-cu121-x86_64-linux/moe/__init__.py +0 -47
  38. build/{torch24-cxx98-cu118-x86_64-linux/moe/_moe_v3wdnwni3a5ce.abi3.so β†’ torch25-cxx11-cu121-x86_64-linux/moe/_moe_ezuwtpw27xv6u.abi3.so} +2 -2
  39. build/torch25-cxx11-cu121-x86_64-linux/moe/_ops.py +3 -3
  40. build/torch25-cxx11-cu121-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  41. build/torch25-cxx11-cu121-x86_64-linux/moe/fused_moe.py +2 -2
  42. build/torch25-cxx11-cu124-x86_64-linux/moe/__init__.py +0 -47
  43. build/{torch24-cxx11-cu124-x86_64-linux/moe/_moe_sg5gu4g3brle6.abi3.so β†’ torch25-cxx11-cu124-x86_64-linux/moe/_moe_b3lelvb3xhtk2.abi3.so} +1 -1
  44. build/torch25-cxx11-cu124-x86_64-linux/moe/_ops.py +3 -3
  45. build/torch25-cxx11-cu124-x86_64-linux/moe/fused_marlin_moe.py +46 -6
  46. build/torch25-cxx11-cu124-x86_64-linux/moe/fused_moe.py +2 -2
  47. build/torch25-cxx98-cu118-x86_64-linux/moe/__init__.py +0 -47
  48. build/torch25-cxx98-cu118-x86_64-linux/moe/_moe_dtibz76vuxaaq.abi3.so +0 -3
  49. build/torch25-cxx98-cu118-x86_64-linux/moe/_moe_mqt4gjnisx6je.abi3.so +3 -0
  50. build/torch25-cxx98-cu118-x86_64-linux/moe/_ops.py +3 -3
build/torch24-cxx11-cu118-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch25-cxx11-cu118-x86_64-linux/moe/_moe_nskz7v224zllw.abi3.so β†’ torch24-cxx11-cu118-x86_64-linux/moe/_moe_w3lspmuramohg.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5defb7114c1ba9cfdb740230057cb0c5cb21efe628840771db32494a89b5aa7
3
  size 84165672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2faeea044dbfd59eaf429d039ae368ed0c3e500817ac1acaefb3720ceca1f5ea
3
  size 84165672
build/torch24-cxx11-cu118-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_wtjc356yopxde
3
- ops = torch.ops._moe_wtjc356yopxde
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_wtjc356yopxde::{op_name}"
 
1
  import torch
2
+ from . import _moe_w3lspmuramohg
3
+ ops = torch.ops._moe_w3lspmuramohg
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_w3lspmuramohg::{op_name}"
build/torch24-cxx11-cu118-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch24-cxx11-cu118-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch24-cxx11-cu121-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch25-cxx11-cu121-x86_64-linux/moe/_moe_t32bhzwhzero6.abi3.so β†’ torch24-cxx11-cu121-x86_64-linux/moe/_moe_xztwj3vfii47s.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8094d225249868d1f1c0abbfe8db3a486a99bd1f0928705e7dd5a998f125d8bf
3
  size 84364504
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5d4bd811ee24dd293d42959e6d23d66dddcc186b2ede701ebcbf6d66705fe1
3
  size 84364504
build/torch24-cxx11-cu121-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_fidhfyl4jgbje
3
- ops = torch.ops._moe_fidhfyl4jgbje
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_fidhfyl4jgbje::{op_name}"
 
1
  import torch
2
+ from . import _moe_xztwj3vfii47s
3
+ ops = torch.ops._moe_xztwj3vfii47s
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_xztwj3vfii47s::{op_name}"
build/torch24-cxx11-cu121-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch24-cxx11-cu121-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch24-cxx11-cu124-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch25-cxx11-cu124-x86_64-linux/moe/_moe_pgljmg5ek5k4e.abi3.so β†’ torch24-cxx11-cu124-x86_64-linux/moe/_moe_zjfwjryvbxcss.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:23f0aec499051a34ed7ba7ac4e58d7d84c5501b8beb1794d6ae8c13f54b08b9e
3
  size 84063160
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8e33340a0b05f5776c1e5ef66e371b2c198dc00c03c810e2c4ef20923d7a417
3
  size 84063160
build/torch24-cxx11-cu124-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_sg5gu4g3brle6
3
- ops = torch.ops._moe_sg5gu4g3brle6
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_sg5gu4g3brle6::{op_name}"
 
1
  import torch
2
+ from . import _moe_zjfwjryvbxcss
3
+ ops = torch.ops._moe_zjfwjryvbxcss
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_zjfwjryvbxcss::{op_name}"
build/torch24-cxx11-cu124-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch24-cxx11-cu124-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch24-cxx98-cu118-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch24-cxx11-cu118-x86_64-linux/moe/_moe_wtjc356yopxde.abi3.so β†’ torch24-cxx98-cu118-x86_64-linux/moe/_moe_vjujc4o4hplak.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6330aa66b63067a8c9c031419773dc47e8853a717ef20b03c57df76660188831
3
- size 84165640
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aea1e40159b3d8ca879344b36d6c3229d764baf9553b1bef2a04460f1f03f31
3
+ size 84157888
build/torch24-cxx98-cu118-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_v3wdnwni3a5ce
3
- ops = torch.ops._moe_v3wdnwni3a5ce
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_v3wdnwni3a5ce::{op_name}"
 
1
  import torch
2
+ from . import _moe_vjujc4o4hplak
3
+ ops = torch.ops._moe_vjujc4o4hplak
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_vjujc4o4hplak::{op_name}"
build/torch24-cxx98-cu118-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch24-cxx98-cu118-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch24-cxx98-cu121-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch25-cxx98-cu121-x86_64-linux/moe/_moe_plblvprmwqffy.abi3.so β†’ torch24-cxx98-cu121-x86_64-linux/moe/_moe_bjua6v5mj6njy.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:704adc83ab06534f1af22b829003765b42c118df3790569b346ef36e7be570de
3
  size 84360960
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71767ce941c8fb0e823c11cdebb01bfd77f2250df2873b862473803072276bf4
3
  size 84360960
build/torch24-cxx98-cu121-x86_64-linux/moe/_moe_hrq7opevcb4ug.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0d1b063e4c52f5d744025e000fd79c5f41cdf56a32883c2d269b9c59f586c9e4
3
- size 84360992
 
 
 
 
build/torch24-cxx98-cu121-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_hrq7opevcb4ug
3
- ops = torch.ops._moe_hrq7opevcb4ug
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_hrq7opevcb4ug::{op_name}"
 
1
  import torch
2
+ from . import _moe_bjua6v5mj6njy
3
+ ops = torch.ops._moe_bjua6v5mj6njy
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_bjua6v5mj6njy::{op_name}"
build/torch24-cxx98-cu121-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch24-cxx98-cu121-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch24-cxx98-cu124-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch25-cxx98-cu124-x86_64-linux/moe/_moe_k6bmwmtgkqymw.abi3.so β†’ torch24-cxx98-cu124-x86_64-linux/moe/_moe_ajhcvhc2njy6q.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:259f926d53dc10e91ef41311f61bcea93fbdbda94758fdca164b37256f9c69de
3
  size 84059616
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38256704ec3f4ad93da175dff5054670c8e9db26b5573579d80331af6f271373
3
  size 84059616
build/torch24-cxx98-cu124-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_p3swbnotpexcc
3
- ops = torch.ops._moe_p3swbnotpexcc
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_p3swbnotpexcc::{op_name}"
 
1
  import torch
2
+ from . import _moe_ajhcvhc2njy6q
3
+ ops = torch.ops._moe_ajhcvhc2njy6q
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_ajhcvhc2njy6q::{op_name}"
build/torch24-cxx98-cu124-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch24-cxx98-cu124-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch25-cxx11-cu118-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch24-cxx11-cu121-x86_64-linux/moe/_moe_fidhfyl4jgbje.abi3.so β†’ torch25-cxx11-cu118-x86_64-linux/moe/_moe_wbafjrt24mw7y.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b0ca4f733821a564c525a36bb13e35ae960dc1e20f6472b177f67b9b165597ff
3
- size 84364504
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb03ab835bafe70c299a49cec39abf27f5b5d78715b16eed3527a683181df529
3
+ size 84165672
build/torch25-cxx11-cu118-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_nskz7v224zllw
3
- ops = torch.ops._moe_nskz7v224zllw
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_nskz7v224zllw::{op_name}"
 
1
  import torch
2
+ from . import _moe_wbafjrt24mw7y
3
+ ops = torch.ops._moe_wbafjrt24mw7y
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_wbafjrt24mw7y::{op_name}"
build/torch25-cxx11-cu118-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch25-cxx11-cu118-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch25-cxx11-cu121-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch24-cxx98-cu118-x86_64-linux/moe/_moe_v3wdnwni3a5ce.abi3.so β†’ torch25-cxx11-cu121-x86_64-linux/moe/_moe_ezuwtpw27xv6u.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e83b7db92da1ee38a3a4e5a453d4279024e6af95efcf0ad4b34e275029e44729
3
- size 84157912
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:378a8a453186ae62a92342077a988271cd7a02f46fbe303b4505d4484f1bfaef
3
+ size 84364536
build/torch25-cxx11-cu121-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_t32bhzwhzero6
3
- ops = torch.ops._moe_t32bhzwhzero6
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_t32bhzwhzero6::{op_name}"
 
1
  import torch
2
+ from . import _moe_ezuwtpw27xv6u
3
+ ops = torch.ops._moe_ezuwtpw27xv6u
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_ezuwtpw27xv6u::{op_name}"
build/torch25-cxx11-cu121-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch25-cxx11-cu121-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch25-cxx11-cu124-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/{torch24-cxx11-cu124-x86_64-linux/moe/_moe_sg5gu4g3brle6.abi3.so β†’ torch25-cxx11-cu124-x86_64-linux/moe/_moe_b3lelvb3xhtk2.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0864e745883f687c46c9ce743f1e2887113734c57268b9bc0e290185be28cf65
3
  size 84063128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ae1204c5e2f4c7692676e0ef703dbab4f20a9f14652c75dee41b8d56560db19
3
  size 84063128
build/torch25-cxx11-cu124-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_pgljmg5ek5k4e
3
- ops = torch.ops._moe_pgljmg5ek5k4e
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_pgljmg5ek5k4e::{op_name}"
 
1
  import torch
2
+ from . import _moe_b3lelvb3xhtk2
3
+ ops = torch.ops._moe_b3lelvb3xhtk2
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_b3lelvb3xhtk2::{op_name}"
build/torch25-cxx11-cu124-x86_64-linux/moe/fused_marlin_moe.py CHANGED
@@ -1,13 +1,25 @@
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
- from typing import Any, Dict, Optional
5
 
6
  import torch
7
 
 
8
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
9
- from .scalar_type import scalar_types
10
- import moe as ops
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  def get_scalar_type(num_bits: int, has_zp: bool):
@@ -116,7 +128,7 @@ def single_marlin_moe(
116
 
117
  scalar_type = get_scalar_type(num_bits, has_zero_point)
118
 
119
- intermediate_cache = ops.ops.marlin_gemm_moe(
120
  hidden_states,
121
  w,
122
  sorted_token_ids,
@@ -287,7 +299,7 @@ def fused_marlin_moe(
287
  dtype=hidden_states.dtype,
288
  )
289
 
290
- intermediate_cache1 = ops.ops.marlin_gemm_moe(
291
  hidden_states,
292
  w1,
293
  sorted_token_ids,
@@ -312,7 +324,7 @@ def fused_marlin_moe(
312
 
313
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
314
 
315
- intermediate_cache3 = ops.ops.marlin_gemm_moe(
316
  intermediate_cache2,
317
  w2,
318
  sorted_token_ids,
@@ -336,3 +348,31 @@ def fused_marlin_moe(
336
  )
337
 
338
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Fused MoE utilities for GPTQ."""
2
 
3
  import functools
4
+ from typing import TYPE_CHECKING, Any, Dict, Optional
5
 
6
  import torch
7
 
8
+ from ._ops import add_op_namespace_prefix, ops
9
  from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
10
+ from .scalar_type import ScalarType, scalar_types
11
+
12
+ # neuron has torch version that doesn't even have impl_abstract
13
+ if TYPE_CHECKING:
14
+
15
+ def register_fake(fn):
16
+ return lambda name: fn
17
+
18
+ else:
19
+ try:
20
+ from torch.library import register_fake
21
+ except ImportError:
22
+ from torch.library import impl_abstract as register_fake
23
 
24
 
25
  def get_scalar_type(num_bits: int, has_zp: bool):
 
128
 
129
  scalar_type = get_scalar_type(num_bits, has_zero_point)
130
 
131
+ intermediate_cache = ops.marlin_gemm_moe(
132
  hidden_states,
133
  w,
134
  sorted_token_ids,
 
299
  dtype=hidden_states.dtype,
300
  )
301
 
302
+ intermediate_cache1 = ops.marlin_gemm_moe(
303
  hidden_states,
304
  w1,
305
  sorted_token_ids,
 
324
 
325
  ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
326
 
327
+ intermediate_cache3 = ops.marlin_gemm_moe(
328
  intermediate_cache2,
329
  w2,
330
  sorted_token_ids,
 
348
  )
349
 
350
  return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
351
+
352
+
353
+ if hasattr(ops, "marlin_gemm_moe"):
354
+
355
+ @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
356
+ def marlin_gemm_moe_fake(
357
+ a: torch.Tensor,
358
+ b_q_weights: torch.Tensor,
359
+ sorted_ids: torch.Tensor,
360
+ topk_weights: torch.Tensor,
361
+ topk_ids: torch.Tensor,
362
+ b_scales: torch.Tensor,
363
+ b_zero_points: torch.Tensor,
364
+ g_idx: torch.Tensor,
365
+ perm: torch.Tensor,
366
+ workspace: torch.Tensor,
367
+ b_q_type: ScalarType,
368
+ size_m: torch.SymInt,
369
+ size_n: torch.SymInt,
370
+ size_k: torch.SymInt,
371
+ is_k_full: bool,
372
+ num_experts: int,
373
+ topk: int,
374
+ moe_block_size: int,
375
+ replicate_input: bool,
376
+ apply_weights: bool,
377
+ ) -> torch.Tensor:
378
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
build/torch25-cxx11-cu124-x86_64-linux/moe/fused_moe.py CHANGED
@@ -9,9 +9,9 @@ import torch
9
  import triton
10
  import triton.language as tl
11
 
12
- from .platforms import current_platform
13
  from .fp8 import scaled_fp8_quant
14
- import moe as ops
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
 
9
  import triton
10
  import triton.language as tl
11
 
12
+ from ._ops import ops
13
  from .fp8 import scaled_fp8_quant
14
+ from .platforms import current_platform
15
 
16
  VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
17
 
build/torch25-cxx98-cu118-x86_64-linux/moe/__init__.py CHANGED
@@ -1,19 +1,5 @@
1
- from typing import TYPE_CHECKING
2
-
3
  import torch
4
 
5
- # neuron has torch version that doesn't even have impl_abstract
6
- if TYPE_CHECKING:
7
-
8
- def register_fake(fn):
9
- return lambda name: fn
10
-
11
- else:
12
- try:
13
- from torch.library import register_fake
14
- except ImportError:
15
- from torch.library import impl_abstract as register_fake
16
-
17
  from ._ops import add_op_namespace_prefix, ops
18
  from .fused_marlin_moe import fused_marlin_moe
19
  from .fused_moe import fused_moe, fused_topk, grouped_topk
@@ -91,39 +77,6 @@ def topk_softmax(
91
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
92
 
93
 
94
- if hasattr(ops, "marlin_gemm_moe"):
95
-
96
- @register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
97
- def marlin_gemm_moe_fake(
98
- a: torch.Tensor,
99
- b_q_weights: torch.Tensor,
100
- sorted_ids: torch.Tensor,
101
- topk_weights: torch.Tensor,
102
- topk_ids: torch.Tensor,
103
- b_scales: torch.Tensor,
104
- b_zero_points: torch.Tensor,
105
- g_idx: torch.Tensor,
106
- perm: torch.Tensor,
107
- workspace: torch.Tensor,
108
- b_q_type: ScalarType,
109
- size_m: torch.SymInt,
110
- size_n: torch.SymInt,
111
- size_k: torch.SymInt,
112
- is_k_full: bool,
113
- num_experts: int,
114
- topk: int,
115
- moe_block_size: int,
116
- replicate_input: bool,
117
- apply_weights: bool,
118
- ) -> torch.Tensor:
119
- return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
120
-
121
-
122
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
123
- ops.silu_and_mul(out, x)
124
- return out
125
-
126
-
127
  __all__ = [
128
  "gptq_marlin_moe_repack",
129
  "awq_marlin_moe_repack",
 
 
 
1
  import torch
2
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from ._ops import add_op_namespace_prefix, ops
4
  from .fused_marlin_moe import fused_marlin_moe
5
  from .fused_moe import fused_moe, fused_topk, grouped_topk
 
77
  ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  __all__ = [
81
  "gptq_marlin_moe_repack",
82
  "awq_marlin_moe_repack",
build/torch25-cxx98-cu118-x86_64-linux/moe/_moe_dtibz76vuxaaq.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1eef7e6a15aca930caa813a845147beeec16159c8cce89891c40d080a6f3062
3
- size 84157880
 
 
 
 
build/torch25-cxx98-cu118-x86_64-linux/moe/_moe_mqt4gjnisx6je.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b8ebfaa74892fb13f34924a63e188b9593cc3290831bf31e0f78ae99c9526b0
3
+ size 84157856
build/torch25-cxx98-cu118-x86_64-linux/moe/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _moe_dtibz76vuxaaq
3
- ops = torch.ops._moe_dtibz76vuxaaq
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_moe_dtibz76vuxaaq::{op_name}"
 
1
  import torch
2
+ from . import _moe_mqt4gjnisx6je
3
+ ops = torch.ops._moe_mqt4gjnisx6je
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_moe_mqt4gjnisx6je::{op_name}"