kernel
moe / activation /activation_kernels.cu
danieldk's picture
danieldk HF staff
Add MoE kernels from vLLM
29e93ec
#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
// Activation and gating kernel template.
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
__global__ void act_and_mul_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const int d) {
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = ACT_FN(x) * y;
}
}
template <typename T>
__device__ __forceinline__ T silu_kernel(const T& x) {
// x * sigmoid(x)
return (T)(((float)x) / (1.0f + expf((float)-x)));
}
template <typename T>
__device__ __forceinline__ T gelu_kernel(const T& x) {
// Equivalent to PyTorch GELU with 'none' approximation.
// Refer to:
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L36-L38
const float f = (float)x;
constexpr float ALPHA = M_SQRT1_2;
return (T)(f * 0.5f * (1.0f + ::erf(f * ALPHA)));
}
template <typename T>
__device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
// Equivalent to PyTorch GELU with 'tanh' approximation.
// Refer to:
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L25-L30
const float f = (float)x;
constexpr float BETA = M_SQRT2 * M_2_SQRTPI * 0.5f;
constexpr float KAPPA = 0.044715;
float x_cube = f * f * f;
float inner = BETA * (f + KAPPA * x_cube);
return (T)(0.5f * f * (1.0f + ::tanhf(inner)));
}
} // namespace vllm
// Launch activation and gating kernel.
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "act_and_mul_kernel", [&] { \
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>> \
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), d); \
});
void silu_and_mul(torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
}
//void gelu_and_mul(torch::Tensor& out, // [..., d]
// torch::Tensor& input) // [..., 2 * d]
//{
// LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
//}
//void gelu_tanh_and_mul(torch::Tensor& out, // [..., d]
// torch::Tensor& input) // [..., 2 * d]
//{
// LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel);
//}
namespace vllm {
template <typename T>
__device__ __forceinline__ T fatrelu_kernel(const T& x, const float threshold) {
const float f = (float)x;
return (T)(f > threshold ? f : 0.0f);
}
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&, const float)>
__global__ void act_and_mul_kernel_with_param(
scalar_t* __restrict__ out, const scalar_t* __restrict__ input, const int d,
const float param) {
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = ACT_FN(x, param) * y;
}
}
} // namespace vllm
#define LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(KERNEL, PARAM) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "act_and_mul_kernel_with_param", [&] { \
vllm::act_and_mul_kernel_with_param<scalar_t, KERNEL<scalar_t>> \
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), d, \
PARAM); \
});
//void fatrelu_and_mul(torch::Tensor& out, // [..., d],
// torch::Tensor& input, // [..., 2 * d]
// double threshold) {
// LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(vllm::fatrelu_kernel, threshold);
//}
namespace vllm {
// Element-wise activation kernel template.
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
__global__ void activation_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., d]
const int d) {
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * d + idx]);
out[token_idx * d + idx] = ACT_FN(x);
}
}
} // namespace vllm
// Launch element-wise activation kernel.
#define LAUNCH_ACTIVATION_KERNEL(KERNEL) \
int d = input.size(-1); \
int64_t num_tokens = input.numel() / d; \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "activation_kernel", [&] { \
vllm::activation_kernel<scalar_t, KERNEL<scalar_t>> \
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), d); \
});
namespace vllm {
template <typename T>
__device__ __forceinline__ T gelu_new_kernel(const T& x) {
const float x3 = (float)(x * x * x);
const T t = (T)tanhf((T)(0.79788456f * (float)(x + (T)(0.044715f * x3))));
return ((T)0.5) * x * (((T)1.0) + t);
}
template <typename T>
__device__ __forceinline__ T gelu_fast_kernel(const T& x) {
const float f = (float)x;
const T t =
(T)tanhf(((T)(f * 0.79788456f)) * (((T)1.0) + (T)(0.044715f * f) * x));
return ((T)0.5) * x * (((T)1.0) + t);
}
template <typename T>
__device__ __forceinline__ T gelu_quick_kernel(const T& x) {
// x * sigmoid(1.702 * x)
return (T)(((float)x) / (1.0f + expf(-1.702f * (float)x)));
}
} // namespace vllm
//void gelu_new(torch::Tensor& out, // [..., d]
// torch::Tensor& input) // [..., d]
//{
// LAUNCH_ACTIVATION_KERNEL(vllm::gelu_new_kernel);
//}
//void gelu_fast(torch::Tensor& out, // [..., d]
// torch::Tensor& input) // [..., d]
//{
// LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
//}
//void gelu_quick(torch::Tensor& out, // [..., d]
// torch::Tensor& input) // [..., d]
//{
// LAUNCH_ACTIVATION_KERNEL(vllm::gelu_quick_kernel);
//}