File size: 1,918 Bytes
1f83cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import random
import torch.nn.functional as F

import flash_mla

# TODO: revise to use the same test as the original code


def test_flash_mla():
    # b = 128
    # s_q = 4096
    # mean_sk = 8192
    # h_q = 16
    # h_kv = 1
    # d = 576
    # dv = 512

    b = 16
    s_q = 16
    mean_sk = 16
    h_q = 16
    h_kv = 1
    d = 576
    dv = 512


    causal = True
    varlen = False

    print(f"{b=}, {s_q=}, {mean_sk=}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {varlen=}")

    cache_seqlens = torch.full((b,), mean_sk, dtype=torch.int32)
    if varlen:
        for i in range(b):
            cache_seqlens[i] = max(random.normalvariate(mean_sk, mean_sk / 2), s_q)
    total_seqlens = cache_seqlens.sum().item()
    mean_seqlens = cache_seqlens.float().mean().int().item()
    max_seqlen = cache_seqlens.max().item()
    # TODO: avoid triton from original code
    # max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
    max_seqlen_pad = max_seqlen + 255 & ~255  # round up to multiple of 256
    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
    block_table = torch.arange(b * max_seqlen_pad // block_size, dtype=torch.int32).view(
        b, max_seqlen_pad // block_size
    )
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
    print(blocked_k.shape)
    for i in range(b):
        blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item() :] = float(
            "nan"
        )
    blocked_v = blocked_k[..., :dv]
    print(blocked_k.shape, blocked_v.shape)

    cache_seqlens = cache_seqlens.to("cuda")

    tile_scheduler_metadata, num_splits = flash_mla.get_mla_metadata(
        seqlens_k=cache_seqlens,
        #
        s_q=s_q * h_q // h_kv,
        h_kv=h_kv,
    )
    print(tile_scheduler_metadata, num_splits)

    # TODO: update to expect the correct output
    assert False