File size: 32,538 Bytes
1f83cde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
#pragma once
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
using namespace cute;
#include "named_barrier.h"
#include "utils.h"
#include "softmax.h"
#include "static_switch.h"
#include "flash_mla.h"
template<typename PrecType, int DIM, int DIM2 = DIM>
constexpr auto getSmemLayoutK() {
constexpr int headSizeBytes = sizeof(PrecType) * DIM;
constexpr int headSizeBytes2 = sizeof(PrecType) * DIM2;
if constexpr (headSizeBytes % 128 == 0 && headSizeBytes2 % 128 == 0) {
return GMMA::Layout_K_SW128_Atom<PrecType>{};
} else if constexpr (headSizeBytes % 64 == 0 && headSizeBytes2 % 64 == 0) {
return GMMA::Layout_K_SW64_Atom<PrecType>{};
} else {
return GMMA::Layout_K_SW32_Atom<PrecType>{};
}
}
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::bfloat16_t, int kHeadDimV_ = 0>
struct Flash_fwd_kernel_traits_mla {
using Element = elem_type;
using ElementAccum = float;
using index_t = int64_t;
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kNWarpsS = 4;
static constexpr int kNThreadsS = kNWarpsS * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kHeadDimV = kHeadDimV_ != 0 ? kHeadDimV_ : kHeadDim;
static_assert(kHeadDimV % 32 == 0);
static_assert(kHeadDimV <= kHeadDim);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
using TiledMma = decltype(make_tiled_mma(
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>,
GMMA::Major::K, GMMA::Major::K>(),
Layout<Shape<Int<kNWarpsS / 4>, _1, _1>>{}));
static constexpr int AtomLayoutNO = kNThreads / kNThreadsS;
using TiledMmaO = decltype(make_tiled_mma(
cute::GMMA::rs_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kHeadDimV / AtomLayoutNO>, Int<kBlockN>>,
GMMA::Major::K, GMMA::Major::MN>(),
Layout<Shape<Int<kNWarpsS / 4>, Int<AtomLayoutNO>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(
getSmemLayoutK<Element, kHeadDim>(),
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemLayoutK = decltype(tile_to_shape(
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
using SmemLayoutV = decltype(tile_to_shape(
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
Shape<Int<kBlockN>, Int<kHeadDimV>>{}));
using SmemLayoutVtransposed = decltype(composition(SmemLayoutV{}, make_layout(Shape<Int<kHeadDimV>, Int<kBlockN>>{}, GenRowMajor{})));
using SmemLayoutP = Layout<Shape<Shape<_2, _2>, Int<kNThreadsS>, _1, Int<kBlockN / 8>>>;
using SmemLayoutRow = Layout<Shape<_2, Int<kNThreadsS>>, Stride<_1, _2>>;
using SmemLayoutAtomO = decltype(composition(
Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<8>, Int<kBlockKSmem>>, Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutO = decltype(tile_to_shape(
SmemLayoutAtomO{},
Shape<Int<kBlockM>, Int<kHeadDimV>>{}));
using SmemCopyAtomO = Copy_Atom<SM90_U32x4_STSM_N, Element>;
using SmemCopyAtomOaccum = Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
using Gmem_copy_struct = SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>;
static constexpr int kNThreadsLoad = kNThreads - kNThreadsS;
static_assert(kNThreadsLoad % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<
Shape<Int<kNThreadsLoad / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopy = decltype(make_tiled_copy(
Copy_Atom<Gmem_copy_struct, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemLayoutAtomO = Layout<
Shape<Int<kNThreadsS / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopyO = decltype(make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtomO{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
static constexpr int kGmemThreadsPerRowAccum = kBlockKSmem / kGmemElemsPerLoadAccum;
using GmemLayoutAtomOaccum = Layout<
Shape<Int<kNThreadsS / kGmemThreadsPerRowAccum>, Int<kGmemThreadsPerRowAccum>>,
Stride<Int<kGmemThreadsPerRowAccum>, _1>>;
using GmemTiledCopyOaccum = decltype(make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
GmemLayoutAtomOaccum{},
Layout<Shape<_1, _4>>{})); // Val layout, 4 vals per store
};
namespace flash {
using namespace cute;
template<typename Kernel_traits>
struct SharedStorageMLA {
union {
struct {
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutQ>> smem_q;
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutK> * 2> smem_k; // Double buffer
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutP>> smem_p;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_scale;
};
struct {
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_max;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_sum;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutO>> smem_o;
};
};
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Split, typename SharedStorage, typename AccO, typename Softmax>
__forceinline__ __device__ void store(const Flash_fwd_mla_params ¶ms, const int bidb, const int bidh, const int m_block, const int n_split_idx,
SharedStorage &shared_storage, AccO tOrO, Softmax softmax) {
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
const int tidx = threadIdx.x;
typename Kernel_traits::TiledMmaO tiled_mma_o;
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
// Epilogue
const int split_offset = __ldg(params.num_splits_ptr + bidb);
Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(tOrO, params.scale_softmax);
using ElementO = std::conditional_t<!Split, Element, ElementAccum>;
Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(shared_storage.smem_o.data())), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
// Partition sO to match the accumulator partitioning
using SmemTiledCopyO = std::conditional_t<
!Split,
typename Kernel_traits::SmemCopyAtomO,
typename Kernel_traits::SmemCopyAtomOaccum
>;
auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma_o);
auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor rO = flash::convert_type<ElementO>(tOrO);
Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum); // ((Atom,AtomNum),PIPE_M,PIPE_N)
__syncthreads();
cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);
const index_t row_offset_o = bidb * params.o_batch_stride + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_oaccum = (((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM) * params.d_v;
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
const index_t row_offset_lseaccum = ((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Shape<Int<kBlockM>, Int<kHeadDimV>>{},
make_stride(Split ? kHeadDimV : params.o_row_stride, _1{}));
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + (Split ? row_offset_lseaccum : row_offset_lse)),
Shape<Int<kBlockM>>{}, Stride<_1>{});
using GmemTiledCopyO = std::conditional_t<!Split, typename Kernel_traits::GmemTiledCopyO, typename Kernel_traits::GmemTiledCopyOaccum>;
GmemTiledCopyO gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
__syncthreads();
if (tidx >= kNThreadsS) { return; }
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor taccOcO = thr_mma_o.partition_C(caccO); // ((MMA=4, X), MMA_M, MMA_K=1)
Tensor taccOcO_row = taccOcO(make_coord(0, _, 0), _, 0);
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
if (get<1>(taccOcO_row(0)) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < params.seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
}
}
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, params.seqlen_q - m_block * kBlockM
);
}
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__forceinline__ __device__ void compute_attn_1rowblock_splitkv_mla(const Flash_fwd_mla_params ¶ms,
const int bidb, const int bidh, const int m_block,
const int n_split_idx, const int seqlen_k,
const int n_block_min, const int n_block_max, const bool NoSplit,
SharedStorage &shared_storage) {
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
constexpr int kNThreads = Kernel_traits::kNThreads;
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
static_assert(kNThreads == 256 and kNThreadsS == 128);
using Element = typename Kernel_traits::Element;
using index_t = typename Kernel_traits::index_t;
const int tidx = threadIdx.x;
int n_block = n_block_max - 1;
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Kernel_traits::SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutV{});
Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutVtransposed{});
Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Kernel_traits::SmemLayoutP{});
Tensor tPsP = sP(_, tidx % kNThreadsS, _, _);
Tensor sScale_o = make_tensor(make_smem_ptr(shared_storage.smem_scale.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tScale_osScale_o = sScale_o(_, tidx % kNThreadsS);
Tensor sRow_max = make_tensor(make_smem_ptr(shared_storage.smem_max.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tRow_maxsRow_max = sRow_max(_, tidx % kNThreadsS);
Tensor sRow_sum = make_tensor(make_smem_ptr(shared_storage.smem_sum.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tRow_sumsRow_sum = sRow_sum(_, tidx % kNThreadsS);
typename Kernel_traits::TiledMmaO tiled_mma_o;
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
Tensor tOrVt = thr_mma_o.partition_fragment_B(sVt); // (MMA, MMA_K,MMA_N)
Tensor tOrO = partition_fragment_C(tiled_mma_o, Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
clear(tOrO);
flash::Softmax<2 * size<1>(tOrO)> softmax;
int warp_group_idx = cutlass::canonical_warp_group_idx();
if (warp_group_idx == 0) {
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
if (n_block % 2 == 1) {
// Double buffer for sK
constexpr int sK_offset = size(sK);
tSrK.data() = tSrK.data() + sK_offset / 8;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = !Is_causal ? 1 : cute::ceil_div(kBlockM, kBlockN) + 1;
#pragma unroll 1
for (int masking_step = n_masking_steps; n_block >= n_block_min; --masking_step, --n_block) {
__syncthreads();
Tensor tSrS = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiled_mma, tSrQ, tSrK, tSrS);
const bool is_masking_step = masking_step > 0;
const bool is_first_masking_step = masking_step == n_masking_steps;
if (is_masking_step) {
Tensor cS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});
Tensor tScS = thr_mma.partition_C(cS);
#pragma unroll
for (int i = 0; i < size(tSrS); ++i) {
if constexpr (!Is_causal) { // Just masking based on col
if (int(get<1>(tScS(i))) >= int(seqlen_k - n_block * kBlockN)) tSrS(i) = -INFINITY;
} else {
// Ensure seqlen_k - 1 - (n_block * kBlockN + col) >= (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
// col <= seqlen_k - 1 - n_block * kBlockN - (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
int row = int(get<0>(tScS(i)));
int col_limit_right = seqlen_k - 1 - n_block * kBlockN - (params.seqlen_q - 1 - (m_block * kBlockM + row)) / params.ngroups;
if (int(get<1>(tScS(i))) > col_limit_right) tSrS(i) = -INFINITY;
}
}
}
// We have key_padding_mask so we'll need to Check_inf
Tensor scale_o = is_first_masking_step
? softmax.template softmax</*Is_first=*/true, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
: is_masking_step ?
softmax.template softmax</*Is_first=*/false, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
: softmax.template softmax</*Is_first=*/false, /*Check_inf=*//*Is_local=*/false>(tSrS, params.scale_softmax_log2);
Tensor rP = flash::convert_type<Element>(tSrS);
cute::copy(rP, tPsP);
cute::copy(scale_o, tScale_osScale_o);
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SReady));
flash::rescale_o(tOrO, scale_o);
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tSrK.data() = tSrK.data() + sK_offset / 8;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
cute::copy(softmax.row_max, tRow_maxsRow_max);
cute::copy(softmax.row_sum, tRow_sumsRow_sum);
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
} else {
const int *block_table = params.block_table + bidb * params.block_table_batch_stride;
int cur_block_table = __ldg(&block_table[n_block]);
const index_t row_offset_q = bidb * params.q_batch_stride + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_Q;
auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx - kNThreadsS);
Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
params.seqlen_q - m_block * kBlockM);
const index_t row_offset_k = (bidh / params.h_h_k_ratio) * params.k_head_stride;
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_K;
auto gmem_thr_copy_K = gmem_tiled_copy_K.get_thread_slice(tidx - kNThreadsS);
Tensor tKgK = gmem_thr_copy_K.partition_S(gK);
Tensor tKsK = gmem_thr_copy_K.partition_D(sK);
Tensor cK = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tKcK = gmem_thr_copy_K.partition_S(cK); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));
if (n_block % 2 == 1) {
// Double buffer for sK
constexpr int sK_offset = size(sK);
tKsK.data() = tKsK.data() + sK_offset;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
// We need to clear the sK smem tiles because K is V.
const index_t offset_k = cur_block_table * params.k_batch_stride;
tKgK.data() = tKgK.data() + offset_k;
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK,
seqlen_k - n_block * kBlockN);
tKgK.data() = tKgK.data() + -offset_k;
cute::cp_async_fence();
if (n_block - 1 >= n_block_min) {
cur_block_table = __ldg(&block_table[n_block - 1]);
}
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
flash::cp_async_wait<0>();
__syncthreads();
if (n_block - 1 >= n_block_min) {
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tKsK.data() = tKsK.data() + sK_offset;
const index_t offset_k = cur_block_table * params.k_batch_stride;
tKgK.data() = tKgK.data() + offset_k;
flash::copy</*Is_even_MN=*/true, /*Is_even_K=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK);
tKgK.data() = tKgK.data() + -offset_k;
cute::cp_async_fence();
}
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SReady));
if (n_block - 2 >= n_block_min) {
cur_block_table = __ldg(&block_table[n_block - 2]);
}
typename Kernel_traits::TiledMma tiled_mma;
auto tSrS_layout = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}).layout();
Tensor rP = make_tensor<Element>(tSrS_layout);
Tensor scale_o = make_tensor<float>(Shape<_2>{});
cute::copy(tScale_osScale_o, scale_o);
cute::copy(tPsP, rP);
flash::rescale_o(tOrO, scale_o);
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
cute::copy(tRow_maxsRow_max, softmax.row_max);
cute::copy(tRow_sumsRow_sum, softmax.row_sum);
}
if (NoSplit)
store<Kernel_traits, false>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
else
store<Kernel_traits, true>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
}
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__global__ void __launch_bounds__(Kernel_traits::kNThreads, 1, 1)
flash_fwd_splitkv_mla_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
constexpr int kBlockN = Kernel_traits::kBlockN;
const int m_block = blockIdx.x;
const int bidh = blockIdx.y;
const int partition_idx = blockIdx.z;
extern __shared__ char shared_memory[];
auto &shared_storage = *reinterpret_cast<SharedStorage *>(shared_memory);
int *tile_scheduler_metadata_ptr = params.tile_scheduler_metadata_ptr + partition_idx * TileSchedulerMetaDataSize;
int4 tile_scheduler_metadata = __ldg(reinterpret_cast<int4 *>(tile_scheduler_metadata_ptr));
int begin_idx = tile_scheduler_metadata.x;
int begin_seqlen = tile_scheduler_metadata.y;
int end_idx = tile_scheduler_metadata.z;
int end_seqlen = tile_scheduler_metadata.w;
if (begin_idx >= params.b) return;
int begin_n_split_idx = __ldg(tile_scheduler_metadata_ptr + 4);
#pragma unroll 1
for (int batch_id = begin_idx; batch_id <= end_idx; ++batch_id) {
const int n_split_idx = batch_id == begin_idx ? begin_n_split_idx : 0;
const int seqlen_k = __ldg(params.cu_seqlens_k + batch_id);
const int n_block_min = batch_id == begin_idx ? begin_seqlen / kBlockN : 0;
const int n_block_max = batch_id == end_idx ? cute::ceil_div(end_seqlen, kBlockN) : cute::ceil_div(seqlen_k, kBlockN);
const bool NoSplit = n_block_min == 0 && n_block_max == cute::ceil_div(seqlen_k, kBlockN);
if (batch_id > begin_idx) {
__syncthreads(); // Barrier between two tiles.
}
flash::compute_attn_1rowblock_splitkv_mla<Kernel_traits, Is_causal>(params, batch_id, bidh, m_block, n_split_idx, seqlen_k, n_block_min, n_block_max, NoSplit, shared_storage);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Element, typename ElementAccum, typename index_t, int kHeadDimV, int kMaxSplits>
__global__ void __launch_bounds__(256, 1, 1)
flash_fwd_splitkv_mla_combine_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
constexpr int kNThreads = 128;
const int tidx = threadIdx.x;
const int bidx = blockIdx.x;
const int hs = params.h * params.seqlen_q;
const int batch_idx = bidx / hs;
const int hs_idx = bidx % hs;
const int split_offset = __ldg(params.num_splits_ptr + batch_idx);
const int actual_num_splits = __ldg(params.num_splits_ptr + batch_idx + 1) - split_offset;
FLASH_DEVICE_ASSERT(actual_num_splits <= kMaxSplits);
if (actual_num_splits == 1) return;
__shared__ ElementAccum sLseScale[kMaxSplits];
const index_t row_offset_lseaccum = split_offset * hs + hs_idx;
const index_t row_offset_lse = bidx;
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lseaccum),
Shape<Int<kMaxSplits>>{}, make_stride(hs));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<_1>{}, Stride<_1>{});
int warp_idx = cutlass::canonical_warp_idx_sync();
if (warp_idx == 0) {
constexpr int kNLsePerThread = cute::ceil_div(kMaxSplits, 32);
float local_lse[kNLsePerThread];
for (int i = 0; i < kNLsePerThread; ++i) {
const int split = i * 32 + tidx;
local_lse[i] = split < actual_num_splits ? gLSEaccum(split) : -INFINITY;
}
float max_lse = -INFINITY;
for (int i = 0; i < kNLsePerThread; ++i) max_lse = max(max_lse, local_lse[i]);
for (int offset = 16; offset >= 1; offset /= 2) max_lse = max(max_lse, __shfl_xor_sync(uint32_t(-1), max_lse, offset));
max_lse = max_lse == -INFINITY ? 0.0f : max_lse; // In case all local LSEs are -inf
float sum_lse = 0;
for (int i = 0; i < kNLsePerThread; ++i) sum_lse = sum_lse + expf(local_lse[i] - max_lse);
for (int offset = 16; offset >= 1; offset /= 2) sum_lse = sum_lse + __shfl_xor_sync(uint32_t(-1), sum_lse, offset);
float global_lse = (sum_lse == 0.f || sum_lse != sum_lse) ? INFINITY : logf(sum_lse) + max_lse;
if (tidx == 0) gLSE(0) = global_lse;
for (int i = 0; i < kNLsePerThread; ++i) {
const int split = i * 32 + tidx;
if (split < actual_num_splits) sLseScale[split] = expf(local_lse[i] - global_lse);
}
}
__syncthreads();
static_assert(kHeadDimV % kNThreads == 0);
constexpr int Elements = kHeadDimV / kNThreads;
const index_t row_offset_oaccum = (split_offset * hs + hs_idx) * kHeadDimV;
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
Shape<Int<kHeadDimV>>{}, Stride<_1>{});
using GmemTiledCopyOaccum = decltype(make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
Layout<Shape<Int<kNThreads>>>{},
Layout<Shape<Int<Elements>>>{}));
GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
clear(tOrO);
for (int split = 0; split < actual_num_splits; ++split) {
cute::copy(tOgOaccum, tOrOaccum);
ElementAccum lse_scale = sLseScale[split];
for (int i = 0; i < size(tOrO); ++i) {
tOrO(i) += lse_scale * tOrOaccum(i);
}
tOgOaccum.data() = tOgOaccum.data() + hs * kHeadDimV;
}
Tensor rO = flash::convert_type<Element>(tOrO);
const int head_idx = (bidx - batch_idx * hs) / params.seqlen_q;
const int row = bidx - batch_idx * hs - head_idx * params.seqlen_q;
auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride + head_idx * params.o_head_stride + row * params.o_row_stride;
Tensor gO = make_tensor(make_gmem_ptr(o_ptr + tidx * Elements), Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
cute::copy(rO, gO);
}
} // namespace flash
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, typename SharedStorage>
void run_flash_splitkv_fwd_mla(Flash_fwd_mla_params ¶ms, cudaStream_t stream) {
FLASH_ASSERT(params.page_block_size == Kernel_traits::kBlockN);
const int num_m_block = cute::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
auto kernel = &flash::flash_fwd_splitkv_mla_kernel<Kernel_traits, Is_causal, SharedStorage>;
constexpr size_t smem_size = sizeof(SharedStorage);
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
kernel<<<dim3(num_m_block, params.h, params.num_sm_parts), Kernel_traits::kNThreads, smem_size, stream>>>(params);
});
CHECK_CUDA_KERNEL_LAUNCH();
dim3 grid_combine(params.b * params.h * params.seqlen_q);
MLA_NUM_SPLITS_SWITCH(params.num_sm_parts, kMaxSplits, [&] {
auto combine_kernel = &flash::flash_fwd_splitkv_mla_combine_kernel<
typename Kernel_traits::Element, typename Kernel_traits::ElementAccum, typename Kernel_traits::index_t, Kernel_traits::kHeadDimV, kMaxSplits>;
combine_kernel<<<grid_combine, 128, 0, stream>>>(params);
});
CHECK_CUDA_KERNEL_LAUNCH();
}
template<typename T, int Headdim>
void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params ¶ms, cudaStream_t stream) {
static_assert(Headdim == 576);
FLASH_ASSERT(params.d_v == 512);
FLASH_ASSERT(params.k_ptr == params.v_ptr); // Shared_KV
using Kernel_traits = Flash_fwd_kernel_traits_mla<576, 64, 64, 8, T, 512>;
run_flash_splitkv_fwd_mla<Kernel_traits, flash::SharedStorageMLA<Kernel_traits>>(params, stream);
}
|