File size: 32,538 Bytes
1f83cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
#pragma once

#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

using namespace cute;

#include "named_barrier.h"
#include "utils.h"
#include "softmax.h"
#include "static_switch.h"
#include "flash_mla.h"


template<typename PrecType, int DIM, int DIM2 = DIM>
constexpr auto getSmemLayoutK() {
    constexpr int headSizeBytes = sizeof(PrecType) * DIM;
    constexpr int headSizeBytes2 = sizeof(PrecType) * DIM2;

    if constexpr (headSizeBytes % 128 == 0 && headSizeBytes2 % 128 == 0) {
        return GMMA::Layout_K_SW128_Atom<PrecType>{};
    } else if constexpr (headSizeBytes % 64 == 0 && headSizeBytes2 % 64 == 0) {
        return GMMA::Layout_K_SW64_Atom<PrecType>{};
    } else {
        return GMMA::Layout_K_SW32_Atom<PrecType>{};
    }
}

template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::bfloat16_t, int kHeadDimV_ = 0>
struct Flash_fwd_kernel_traits_mla {
    using Element = elem_type;
    using ElementAccum = float;
    using index_t = int64_t;

    static constexpr int kNWarps = kNWarps_;
    static constexpr int kNThreads = kNWarps * 32;
    static constexpr int kNWarpsS = 4;
    static constexpr int kNThreadsS = kNWarpsS * 32;

    static constexpr int kBlockM = kBlockM_;
    static constexpr int kBlockN = kBlockN_;
    static constexpr int kHeadDim = kHeadDim_;
    static_assert(kHeadDim % 32 == 0);
    static constexpr int kHeadDimV = kHeadDimV_ != 0 ? kHeadDimV_ : kHeadDim;
    static_assert(kHeadDimV % 32 == 0);
    static_assert(kHeadDimV <= kHeadDim);
    static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
    static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;

    using TiledMma = decltype(make_tiled_mma(
            cute::GMMA::ss_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>,
                    GMMA::Major::K, GMMA::Major::K>(),
            Layout<Shape<Int<kNWarpsS / 4>, _1, _1>>{}));

    static constexpr int AtomLayoutNO = kNThreads / kNThreadsS;
    using TiledMmaO = decltype(make_tiled_mma(
            cute::GMMA::rs_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kHeadDimV / AtomLayoutNO>, Int<kBlockN>>,
                    GMMA::Major::K, GMMA::Major::MN>(),
            Layout<Shape<Int<kNWarpsS / 4>, Int<AtomLayoutNO>, _1>>{}));

    using SmemLayoutQ = decltype(tile_to_shape(
            getSmemLayoutK<Element, kHeadDim>(),
            Shape<Int<kBlockM>, Int<kHeadDim>>{}));

    using SmemLayoutK = decltype(tile_to_shape(
            getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
            Shape<Int<kBlockN>, Int<kHeadDim>>{}));

    using SmemLayoutV = decltype(tile_to_shape(
            getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
            Shape<Int<kBlockN>, Int<kHeadDimV>>{}));
    using SmemLayoutVtransposed = decltype(composition(SmemLayoutV{}, make_layout(Shape<Int<kHeadDimV>, Int<kBlockN>>{}, GenRowMajor{})));

    using SmemLayoutP = Layout<Shape<Shape<_2, _2>, Int<kNThreadsS>, _1, Int<kBlockN / 8>>>;
    using SmemLayoutRow = Layout<Shape<_2, Int<kNThreadsS>>, Stride<_1, _2>>;

    using SmemLayoutAtomO = decltype(composition(
            Swizzle<kSwizzle, 3, 3>{},
            Layout<Shape<Int<8>, Int<kBlockKSmem>>, Stride<Int<kBlockKSmem>, _1>>{}));
    using SmemLayoutO = decltype(tile_to_shape(
            SmemLayoutAtomO{},
            Shape<Int<kBlockM>, Int<kHeadDimV>>{}));
    using SmemCopyAtomO = Copy_Atom<SM90_U32x4_STSM_N, Element>;
    using SmemCopyAtomOaccum = Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>;

    static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
    static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
    static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
    using Gmem_copy_struct = SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>;
    static constexpr int kNThreadsLoad = kNThreads - kNThreadsS;
    static_assert(kNThreadsLoad % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");

    using GmemLayoutAtom = Layout<
            Shape<Int<kNThreadsLoad / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
            Stride<Int<kGmemThreadsPerRow>, _1>>;
    using GmemTiledCopy = decltype(make_tiled_copy(
            Copy_Atom<Gmem_copy_struct, Element>{},
            GmemLayoutAtom{},
            Layout<Shape<_1, _8>>{}));  // Val layout, 8 vals per read

    using GmemLayoutAtomO = Layout<
            Shape<Int<kNThreadsS / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
            Stride<Int<kGmemThreadsPerRow>, _1>>;
    using GmemTiledCopyO = decltype(make_tiled_copy(
            Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
            GmemLayoutAtomO{},
            Layout<Shape<_1, _8>>{}));  // Val layout, 8 vals per store

    static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
    static constexpr int kGmemThreadsPerRowAccum = kBlockKSmem / kGmemElemsPerLoadAccum;
    using GmemLayoutAtomOaccum = Layout<
            Shape<Int<kNThreadsS / kGmemThreadsPerRowAccum>, Int<kGmemThreadsPerRowAccum>>,
            Stride<Int<kGmemThreadsPerRowAccum>, _1>>;
    using GmemTiledCopyOaccum = decltype(make_tiled_copy(
            Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
            GmemLayoutAtomOaccum{},
            Layout<Shape<_1, _4>>{}));  // Val layout, 4 vals per store
};

namespace flash {

using namespace cute;

template<typename Kernel_traits>
struct SharedStorageMLA {
    union {
        struct {
            cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutQ>> smem_q;
            cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutK> * 2> smem_k;  // Double buffer
            cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutP>> smem_p;
            cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_scale;
        };
        struct {
            cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_max;
            cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_sum;
            cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutO>> smem_o;
        };
    };
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Split, typename SharedStorage, typename AccO, typename Softmax>
__forceinline__ __device__ void store(const Flash_fwd_mla_params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx,
                                      SharedStorage &shared_storage, AccO tOrO, Softmax softmax) {
    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
    constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int tidx = threadIdx.x;

    typename Kernel_traits::TiledMmaO tiled_mma_o;
    auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);

    // Epilogue

    const int split_offset = __ldg(params.num_splits_ptr + bidb);

    Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(tOrO, params.scale_softmax);

    using ElementO = std::conditional_t<!Split, Element, ElementAccum>;
    Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(shared_storage.smem_o.data())), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
    // Partition sO to match the accumulator partitioning
    using SmemTiledCopyO = std::conditional_t<
            !Split,
            typename Kernel_traits::SmemCopyAtomO,
            typename Kernel_traits::SmemCopyAtomOaccum
    >;
    auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma_o);
    auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor rO = flash::convert_type<ElementO>(tOrO);
    Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

    __syncthreads();

    cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);

    const index_t row_offset_o = bidb * params.o_batch_stride + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_oaccum = (((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM) * params.d_v;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
    const index_t row_offset_lseaccum = ((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
                                 Shape<Int<kBlockM>, Int<kHeadDimV>>{},
                                 make_stride(Split ? kHeadDimV : params.o_row_stride, _1{}));
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + (Split ? row_offset_lseaccum : row_offset_lse)),
                                   Shape<Int<kBlockM>>{}, Stride<_1>{});

    using GmemTiledCopyO = std::conditional_t<!Split, typename Kernel_traits::GmemTiledCopyO, typename Kernel_traits::GmemTiledCopyOaccum>;
    GmemTiledCopyO gmem_tiled_copy_Oaccum;
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);

    __syncthreads();

    if (tidx >= kNThreadsS) { return; }

    Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
    cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDimV>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma_o.partition_C(caccO);                           // ((MMA=4, X), MMA_M, MMA_K=1)
    Tensor taccOcO_row = taccOcO(make_coord(0, _, 0), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
#pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < params.seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, params.seqlen_q - m_block * kBlockM
    );
}

template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__forceinline__ __device__ void compute_attn_1rowblock_splitkv_mla(const Flash_fwd_mla_params &params,
                                                                   const int bidb, const int bidh, const int m_block,
                                                                   const int n_split_idx, const int seqlen_k,
                                                                   const int n_block_min, const int n_block_max, const bool NoSplit,
                                                                   SharedStorage &shared_storage) {
    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
    constexpr int kNThreads = Kernel_traits::kNThreads;
    constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
    static_assert(kNThreads == 256 and kNThreadsS == 128);
    using Element = typename Kernel_traits::Element;
    using index_t = typename Kernel_traits::index_t;

    const int tidx = threadIdx.x;
    int n_block = n_block_max - 1;

    Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Kernel_traits::SmemLayoutQ{});
    Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutK{});
    Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutV{});
    Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutVtransposed{});

    Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Kernel_traits::SmemLayoutP{});
    Tensor tPsP = sP(_, tidx % kNThreadsS, _, _);
    Tensor sScale_o = make_tensor(make_smem_ptr(shared_storage.smem_scale.data()), typename Kernel_traits::SmemLayoutRow{});
    Tensor tScale_osScale_o = sScale_o(_, tidx % kNThreadsS);
    Tensor sRow_max = make_tensor(make_smem_ptr(shared_storage.smem_max.data()), typename Kernel_traits::SmemLayoutRow{});
    Tensor tRow_maxsRow_max = sRow_max(_, tidx % kNThreadsS);
    Tensor sRow_sum = make_tensor(make_smem_ptr(shared_storage.smem_sum.data()), typename Kernel_traits::SmemLayoutRow{});
    Tensor tRow_sumsRow_sum = sRow_sum(_, tidx % kNThreadsS);

    typename Kernel_traits::TiledMmaO tiled_mma_o;
    auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
    Tensor tOrVt = thr_mma_o.partition_fragment_B(sVt);                // (MMA, MMA_K,MMA_N)
    Tensor tOrO = partition_fragment_C(tiled_mma_o, Shape<Int<kBlockM>, Int<kHeadDimV>>{});  // ((MMA=4, X), MMA_M, MMA_N=1)
    clear(tOrO);

    flash::Softmax<2 * size<1>(tOrO)> softmax;

    int warp_group_idx = cutlass::canonical_warp_group_idx();
    if (warp_group_idx == 0) {
        typename Kernel_traits::TiledMma tiled_mma;
        auto thr_mma = tiled_mma.get_thread_slice(tidx);
        Tensor tSrQ = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
        Tensor tSrK = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)

        if (n_block % 2 == 1) {
            // Double buffer for sK
            constexpr int sK_offset = size(sK);
            tSrK.data() = tSrK.data() + sK_offset / 8;
            tOrVt.data() = tOrVt.data() + sK_offset / 8;
        }

        // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
        // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
        // We will have at least 1 "masking" iteration.
        // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
        // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
        constexpr int n_masking_steps = !Is_causal ? 1 : cute::ceil_div(kBlockM, kBlockN) + 1;
#pragma unroll 1
        for (int masking_step = n_masking_steps; n_block >= n_block_min; --masking_step, --n_block) {
            __syncthreads();

            Tensor tSrS = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // ((MMA=4, X), MMA_M, MMA_N=1)
            flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiled_mma, tSrQ, tSrK, tSrS);

            const bool is_masking_step = masking_step > 0;
            const bool is_first_masking_step = masking_step == n_masking_steps;

            if (is_masking_step) {
                Tensor cS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});
                Tensor tScS = thr_mma.partition_C(cS);
#pragma unroll
                for (int i = 0; i < size(tSrS); ++i) {
                    if constexpr (!Is_causal) {  // Just masking based on col
                        if (int(get<1>(tScS(i))) >= int(seqlen_k - n_block * kBlockN)) tSrS(i) = -INFINITY;
                    } else {
                        // Ensure seqlen_k - 1 - (n_block * kBlockN + col) >= (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
                        // col <= seqlen_k - 1 - n_block * kBlockN - (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
                        int row = int(get<0>(tScS(i)));
                        int col_limit_right = seqlen_k - 1 - n_block * kBlockN - (params.seqlen_q - 1 - (m_block * kBlockM + row)) / params.ngroups;
                        if (int(get<1>(tScS(i))) > col_limit_right) tSrS(i) = -INFINITY;
                    }
                }
            }

            // We have key_padding_mask so we'll need to Check_inf
            Tensor scale_o = is_first_masking_step
                             ? softmax.template softmax</*Is_first=*/true,  /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
                             : is_masking_step ?
                               softmax.template softmax</*Is_first=*/false, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
                                               : softmax.template softmax</*Is_first=*/false, /*Check_inf=*//*Is_local=*/false>(tSrS, params.scale_softmax_log2);

            Tensor rP = flash::convert_type<Element>(tSrS);
            cute::copy(rP, tPsP);
            cute::copy(scale_o, tScale_osScale_o);

            cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SReady));

            flash::rescale_o(tOrO, scale_o);

            Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
            flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);

            // Double buffer for sK
            const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
            tSrK.data() = tSrK.data() + sK_offset / 8;
            tOrVt.data() = tOrVt.data() + sK_offset / 8;
        }

        cute::copy(softmax.row_max, tRow_maxsRow_max);
        cute::copy(softmax.row_sum, tRow_sumsRow_sum);
        cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
    } else {
        const int *block_table = params.block_table + bidb * params.block_table_batch_stride;
        int cur_block_table = __ldg(&block_table[n_block]);

        const index_t row_offset_q = bidb * params.q_batch_stride + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
        Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                                Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                make_stride(params.q_row_stride, _1{}));
        typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_Q;
        auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx - kNThreadsS);
        Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
        Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
        Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));  // (BLK_M,BLK_K) -> (blk_m,blk_k)
        Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ);  // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
        Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));

        // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
        flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
                                                              params.seqlen_q - m_block * kBlockM);

        const index_t row_offset_k = (bidh / params.h_h_k_ratio) * params.k_head_stride;
        Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                                Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                make_stride(params.k_row_stride, _1{}));
        typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_K;
        auto gmem_thr_copy_K = gmem_tiled_copy_K.get_thread_slice(tidx - kNThreadsS);
        Tensor tKgK = gmem_thr_copy_K.partition_S(gK);
        Tensor tKsK = gmem_thr_copy_K.partition_D(sK);
        Tensor cK = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));  // (BLK_N,BLK_K) -> (blk_n,blk_k)
        Tensor tKcK = gmem_thr_copy_K.partition_S(cK);  // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
        Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));

        if (n_block % 2 == 1) {
            // Double buffer for sK
            constexpr int sK_offset = size(sK);
            tKsK.data() = tKsK.data() + sK_offset;
            tOrVt.data() = tOrVt.data() + sK_offset / 8;
        }

        // We need to clear the sK smem tiles because K is V.
        const index_t offset_k = cur_block_table * params.k_batch_stride;
        tKgK.data() = tKgK.data() + offset_k;
        flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK,
                                                                                        seqlen_k - n_block * kBlockN);
        tKgK.data() = tKgK.data() + -offset_k;
        cute::cp_async_fence();

        if (n_block - 1 >= n_block_min) {
            cur_block_table = __ldg(&block_table[n_block - 1]);
        }

#pragma unroll 1
        for (; n_block >= n_block_min; --n_block) {
            flash::cp_async_wait<0>();
            __syncthreads();

            if (n_block - 1 >= n_block_min) {
                // Double buffer for sK
                const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
                tKsK.data() = tKsK.data() + sK_offset;

                const index_t offset_k = cur_block_table * params.k_batch_stride;
                tKgK.data() = tKgK.data() + offset_k;
                flash::copy</*Is_even_MN=*/true, /*Is_even_K=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK);
                tKgK.data() = tKgK.data() + -offset_k;
                cute::cp_async_fence();
            }

            cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SReady));

            if (n_block - 2 >= n_block_min) {
                cur_block_table = __ldg(&block_table[n_block - 2]);
            }

            typename Kernel_traits::TiledMma tiled_mma;
            auto tSrS_layout = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}).layout();
            Tensor rP = make_tensor<Element>(tSrS_layout);
            Tensor scale_o = make_tensor<float>(Shape<_2>{});
            cute::copy(tScale_osScale_o, scale_o);
            cute::copy(tPsP, rP);

            flash::rescale_o(tOrO, scale_o);

            Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
            flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);

            // Double buffer for sK
            const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
            tOrVt.data() = tOrVt.data() + sK_offset / 8;
        }

        cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
        cute::copy(tRow_maxsRow_max, softmax.row_max);
        cute::copy(tRow_sumsRow_sum, softmax.row_sum);
    }

    if (NoSplit)
        store<Kernel_traits, false>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
    else
        store<Kernel_traits, true>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
}

template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__global__ void __launch_bounds__(Kernel_traits::kNThreads, 1, 1)
flash_fwd_splitkv_mla_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
    constexpr int kBlockN = Kernel_traits::kBlockN;
    const int m_block = blockIdx.x;
    const int bidh = blockIdx.y;
    const int partition_idx = blockIdx.z;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<SharedStorage *>(shared_memory);

    int *tile_scheduler_metadata_ptr = params.tile_scheduler_metadata_ptr + partition_idx * TileSchedulerMetaDataSize;
    int4 tile_scheduler_metadata = __ldg(reinterpret_cast<int4 *>(tile_scheduler_metadata_ptr));
    int begin_idx = tile_scheduler_metadata.x;
    int begin_seqlen = tile_scheduler_metadata.y;
    int end_idx = tile_scheduler_metadata.z;
    int end_seqlen = tile_scheduler_metadata.w;
    if (begin_idx >= params.b) return;
    int begin_n_split_idx = __ldg(tile_scheduler_metadata_ptr + 4);

#pragma unroll 1
    for (int batch_id = begin_idx; batch_id <= end_idx; ++batch_id) {
        const int n_split_idx = batch_id == begin_idx ? begin_n_split_idx : 0;
        const int seqlen_k = __ldg(params.cu_seqlens_k + batch_id);
        const int n_block_min = batch_id == begin_idx ? begin_seqlen / kBlockN : 0;
        const int n_block_max = batch_id == end_idx ? cute::ceil_div(end_seqlen, kBlockN) : cute::ceil_div(seqlen_k, kBlockN);
        const bool NoSplit = n_block_min == 0 && n_block_max == cute::ceil_div(seqlen_k, kBlockN);
        if (batch_id > begin_idx) {
            __syncthreads();  // Barrier between two tiles.
        }
        flash::compute_attn_1rowblock_splitkv_mla<Kernel_traits, Is_causal>(params, batch_id, bidh, m_block, n_split_idx, seqlen_k, n_block_min, n_block_max, NoSplit, shared_storage);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Element, typename ElementAccum, typename index_t, int kHeadDimV, int kMaxSplits>
__global__ void __launch_bounds__(256, 1, 1)
flash_fwd_splitkv_mla_combine_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
    constexpr int kNThreads = 128;

    const int tidx = threadIdx.x;
    const int bidx = blockIdx.x;
    const int hs = params.h * params.seqlen_q;
    const int batch_idx = bidx / hs;
    const int hs_idx = bidx % hs;

    const int split_offset = __ldg(params.num_splits_ptr + batch_idx);
    const int actual_num_splits = __ldg(params.num_splits_ptr + batch_idx + 1) - split_offset;
    FLASH_DEVICE_ASSERT(actual_num_splits <= kMaxSplits);
    if (actual_num_splits == 1) return;

    __shared__ ElementAccum sLseScale[kMaxSplits];

    const index_t row_offset_lseaccum = split_offset * hs + hs_idx;
    const index_t row_offset_lse = bidx;
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lseaccum),
                                   Shape<Int<kMaxSplits>>{}, make_stride(hs));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<_1>{}, Stride<_1>{});

    int warp_idx = cutlass::canonical_warp_idx_sync();
    if (warp_idx == 0) {
        constexpr int kNLsePerThread = cute::ceil_div(kMaxSplits, 32);

        float local_lse[kNLsePerThread];
        for (int i = 0; i < kNLsePerThread; ++i) {
            const int split = i * 32 + tidx;
            local_lse[i] = split < actual_num_splits ? gLSEaccum(split) : -INFINITY;
        }

        float max_lse = -INFINITY;
        for (int i = 0; i < kNLsePerThread; ++i) max_lse = max(max_lse, local_lse[i]);
        for (int offset = 16; offset >= 1; offset /= 2) max_lse = max(max_lse, __shfl_xor_sync(uint32_t(-1), max_lse, offset));
        max_lse = max_lse == -INFINITY ? 0.0f : max_lse;  // In case all local LSEs are -inf

        float sum_lse = 0;
        for (int i = 0; i < kNLsePerThread; ++i) sum_lse = sum_lse + expf(local_lse[i] - max_lse);
        for (int offset = 16; offset >= 1; offset /= 2) sum_lse = sum_lse + __shfl_xor_sync(uint32_t(-1), sum_lse, offset);

        float global_lse = (sum_lse == 0.f || sum_lse != sum_lse) ? INFINITY : logf(sum_lse) + max_lse;
        if (tidx == 0) gLSE(0) = global_lse;

        for (int i = 0; i < kNLsePerThread; ++i) {
            const int split = i * 32 + tidx;
            if (split < actual_num_splits) sLseScale[split] = expf(local_lse[i] - global_lse);
        }
    }
    __syncthreads();

    static_assert(kHeadDimV % kNThreads == 0);
    constexpr int Elements = kHeadDimV / kNThreads;
    const index_t row_offset_oaccum = (split_offset * hs + hs_idx) * kHeadDimV;
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
                                 Shape<Int<kHeadDimV>>{}, Stride<_1>{});
    using GmemTiledCopyOaccum = decltype(make_tiled_copy(
            Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
            Layout<Shape<Int<kNThreads>>>{},
            Layout<Shape<Int<Elements>>>{}));
    GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
    Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
    Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
    clear(tOrO);

    for (int split = 0; split < actual_num_splits; ++split) {
        cute::copy(tOgOaccum, tOrOaccum);
        ElementAccum lse_scale = sLseScale[split];
        for (int i = 0; i < size(tOrO); ++i) {
            tOrO(i) += lse_scale * tOrOaccum(i);
        }
        tOgOaccum.data() = tOgOaccum.data() + hs * kHeadDimV;
    }

    Tensor rO = flash::convert_type<Element>(tOrO);
    const int head_idx = (bidx - batch_idx * hs) / params.seqlen_q;
    const int row = bidx - batch_idx * hs - head_idx * params.seqlen_q;
    auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride + head_idx * params.o_head_stride + row * params.o_row_stride;
    Tensor gO = make_tensor(make_gmem_ptr(o_ptr + tidx * Elements), Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
    cute::copy(rO, gO);
}

} // namespace flash

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, typename SharedStorage>
void run_flash_splitkv_fwd_mla(Flash_fwd_mla_params &params, cudaStream_t stream) {
    FLASH_ASSERT(params.page_block_size == Kernel_traits::kBlockN);
    const int num_m_block = cute::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
        auto kernel = &flash::flash_fwd_splitkv_mla_kernel<Kernel_traits, Is_causal, SharedStorage>;
        constexpr size_t smem_size = sizeof(SharedStorage);
        CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
        kernel<<<dim3(num_m_block, params.h, params.num_sm_parts), Kernel_traits::kNThreads, smem_size, stream>>>(params);
    });
    CHECK_CUDA_KERNEL_LAUNCH();

    dim3 grid_combine(params.b * params.h * params.seqlen_q);
    MLA_NUM_SPLITS_SWITCH(params.num_sm_parts, kMaxSplits, [&] {
        auto combine_kernel = &flash::flash_fwd_splitkv_mla_combine_kernel<
                typename Kernel_traits::Element, typename Kernel_traits::ElementAccum, typename Kernel_traits::index_t, Kernel_traits::kHeadDimV, kMaxSplits>;
        combine_kernel<<<grid_combine, 128, 0, stream>>>(params);
    });
    CHECK_CUDA_KERNEL_LAUNCH();
}

template<typename T, int Headdim>
void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params &params, cudaStream_t stream) {
    static_assert(Headdim == 576);
    FLASH_ASSERT(params.d_v == 512);
    FLASH_ASSERT(params.k_ptr == params.v_ptr);  // Shared_KV
    using Kernel_traits = Flash_fwd_kernel_traits_mla<576, 64, 64, 8, T, 512>;
    run_flash_splitkv_fwd_mla<Kernel_traits, flash::SharedStorageMLA<Kernel_traits>>(params, stream);
}