drbh
commited on
Commit
·
e612007
1
Parent(s):
40f2269
feat: add build
Browse files- build/torch26-cxx11-cu118-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch26-cxx11-cu118-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch26-cxx11-cu118-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch26-cxx11-cu124-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch26-cxx11-cu124-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch26-cxx11-cu124-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch26-cxx11-cu126-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch26-cxx11-cu126-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch26-cxx11-cu126-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch26-cxx98-cu118-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch26-cxx98-cu118-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch26-cxx98-cu118-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch26-cxx98-cu124-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch26-cxx98-cu124-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch26-cxx98-cu124-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch26-cxx98-cu126-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch26-cxx98-cu126-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch26-cxx98-cu126-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch27-cxx11-cu118-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch27-cxx11-cu118-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch27-cxx11-cu118-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch27-cxx11-cu126-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch27-cxx11-cu126-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch27-cxx11-cu126-x86_64-linux/adam_atan2/_ops.py +9 -0
- build/torch27-cxx11-cu128-x86_64-linux/adam_atan2/__init__.py +133 -0
- build/torch27-cxx11-cu128-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so +3 -0
- build/torch27-cxx11-cu128-x86_64-linux/adam_atan2/_ops.py +9 -0
build/torch26-cxx11-cu118-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch26-cxx11-cu118-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3bf69bbdc95e26ae0b98ecd42e238a8fa67c503348ba062c8af18e681b758db3
|
| 3 |
+
size 2900352
|
build/torch26-cxx11-cu118-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch26-cxx11-cu124-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch26-cxx11-cu124-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50887573fa0599bcc94b948faaa38d9c6e06f8a654c066d5f49460b86a109c1b
|
| 3 |
+
size 2929048
|
build/torch26-cxx11-cu124-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch26-cxx11-cu126-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch26-cxx11-cu126-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eec0b7d37568f183dfbcb419f359f9b046fd893e075525083f635c2f936c89e0
|
| 3 |
+
size 2933584
|
build/torch26-cxx11-cu126-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch26-cxx98-cu118-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch26-cxx98-cu118-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13a70e896d05f084a9a736b17604e859a6b384fb9dc93b5c28486a3a84d2bc93
|
| 3 |
+
size 2897504
|
build/torch26-cxx98-cu118-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch26-cxx98-cu124-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch26-cxx98-cu124-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f11e153608ac8a325a312278994b01278dd47c41173ee06241eff26f69637a48
|
| 3 |
+
size 2922152
|
build/torch26-cxx98-cu124-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch26-cxx98-cu126-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch26-cxx98-cu126-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:993bdb2c8dd5dc103bdb1c2d632e0f41ace2caf6665e3211b2954bc191eb5bf9
|
| 3 |
+
size 2926688
|
build/torch26-cxx98-cu126-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch27-cxx11-cu118-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch27-cxx11-cu118-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:47610d48450a101312d6e6335153e925a90efd357e1b252f3eec07b1459cd58f
|
| 3 |
+
size 2900448
|
build/torch27-cxx11-cu118-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch27-cxx11-cu126-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch27-cxx11-cu126-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d202c842a41a288e7c56b9063ad1ab1962cde09a647072344f07c76687555f7
|
| 3 |
+
size 2933616
|
build/torch27-cxx11-cu126-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|
build/torch27-cxx11-cu128-x86_64-linux/adam_atan2/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: Torch needs to be imported before the custom
|
| 2 |
+
# extensions. Otherwise libc10.so cannot be found.
|
| 3 |
+
import torch
|
| 4 |
+
from ._ops import ops
|
| 5 |
+
|
| 6 |
+
from typing import List, Tuple, Union
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
from torch.optim.optimizer import Optimizer, ParamsT
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class AdamATan2(Optimizer):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
params: ParamsT,
|
| 15 |
+
lr: Union[float, Tensor] = 1e-3,
|
| 16 |
+
betas: Tuple[float, float] = (0.9, 0.999),
|
| 17 |
+
weight_decay: float = 1e-2,
|
| 18 |
+
):
|
| 19 |
+
if not 0.0 <= lr:
|
| 20 |
+
raise ValueError(f"Invalid learning rate: {lr}")
|
| 21 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 22 |
+
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
| 23 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 24 |
+
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
| 25 |
+
if not 0.0 <= weight_decay:
|
| 26 |
+
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
| 27 |
+
|
| 28 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 29 |
+
super().__init__(params, defaults)
|
| 30 |
+
|
| 31 |
+
def _init_group(
|
| 32 |
+
self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 33 |
+
):
|
| 34 |
+
for p in group["params"]:
|
| 35 |
+
if p.grad is None:
|
| 36 |
+
continue
|
| 37 |
+
|
| 38 |
+
params_with_grad.append(p)
|
| 39 |
+
if p.grad.is_sparse:
|
| 40 |
+
raise RuntimeError("AdamW does not support sparse gradients")
|
| 41 |
+
grads.append(p.grad)
|
| 42 |
+
|
| 43 |
+
state = self.state[p]
|
| 44 |
+
|
| 45 |
+
# State initialization
|
| 46 |
+
if len(state) == 0:
|
| 47 |
+
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
|
| 48 |
+
# This is because kernel launches are costly on CUDA and XLA.
|
| 49 |
+
state["step"] = torch.zeros((), dtype=torch.float32, device=p.device)
|
| 50 |
+
# Exponential moving average of gradient values
|
| 51 |
+
state["exp_avg"] = torch.zeros_like(
|
| 52 |
+
p, memory_format=torch.preserve_format
|
| 53 |
+
)
|
| 54 |
+
# Exponential moving average of squared gradient values
|
| 55 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
| 56 |
+
p, memory_format=torch.preserve_format
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
exp_avgs.append(state["exp_avg"])
|
| 60 |
+
exp_avg_sqs.append(state["exp_avg_sq"])
|
| 61 |
+
state_steps.append(state["step"])
|
| 62 |
+
|
| 63 |
+
def step(self):
|
| 64 |
+
"""Perform a single optimization step."""
|
| 65 |
+
self._cuda_graph_capture_health_check()
|
| 66 |
+
|
| 67 |
+
for group in self.param_groups:
|
| 68 |
+
params_with_grad = []
|
| 69 |
+
grads = []
|
| 70 |
+
exp_avgs = []
|
| 71 |
+
exp_avg_sqs = []
|
| 72 |
+
state_steps = []
|
| 73 |
+
beta1, beta2 = group["betas"]
|
| 74 |
+
|
| 75 |
+
self._init_group(
|
| 76 |
+
group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
_adam_atan2(
|
| 80 |
+
params_with_grad,
|
| 81 |
+
grads,
|
| 82 |
+
exp_avgs,
|
| 83 |
+
exp_avg_sqs,
|
| 84 |
+
state_steps,
|
| 85 |
+
beta1=beta1,
|
| 86 |
+
beta2=beta2,
|
| 87 |
+
lr=group["lr"],
|
| 88 |
+
weight_decay=group["weight_decay"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _adam_atan2(
|
| 93 |
+
params: List[Tensor],
|
| 94 |
+
grads: List[Tensor],
|
| 95 |
+
exp_avgs: List[Tensor],
|
| 96 |
+
exp_avg_sqs: List[Tensor],
|
| 97 |
+
state_steps: List[Tensor],
|
| 98 |
+
beta1: float,
|
| 99 |
+
beta2: float,
|
| 100 |
+
lr: float,
|
| 101 |
+
weight_decay: float,
|
| 102 |
+
) -> None:
|
| 103 |
+
if not params:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
# We only support scalar lr.
|
| 107 |
+
assert not isinstance(lr, Tensor)
|
| 108 |
+
|
| 109 |
+
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
| 110 |
+
[params, grads, exp_avgs, exp_avg_sqs, state_steps]
|
| 111 |
+
)
|
| 112 |
+
for (device, _), (
|
| 113 |
+
(
|
| 114 |
+
device_params,
|
| 115 |
+
device_grads,
|
| 116 |
+
device_exp_avgs,
|
| 117 |
+
device_exp_avg_sqs,
|
| 118 |
+
device_state_steps,
|
| 119 |
+
),
|
| 120 |
+
_,
|
| 121 |
+
) in grouped_tensors.items():
|
| 122 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 123 |
+
ops.adam_atan2_cuda_impl_(
|
| 124 |
+
device_params,
|
| 125 |
+
device_grads,
|
| 126 |
+
device_exp_avgs,
|
| 127 |
+
device_exp_avg_sqs,
|
| 128 |
+
device_state_steps,
|
| 129 |
+
lr,
|
| 130 |
+
beta1,
|
| 131 |
+
beta2,
|
| 132 |
+
weight_decay,
|
| 133 |
+
)
|
build/torch27-cxx11-cu128-x86_64-linux/adam_atan2/_adam_atan2_40f2269.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37cf6b90c834d55ed802734bb91a8a601f6eab6a88e0e8eed7bd4cb449c563fd
|
| 3 |
+
size 3688960
|
build/torch27-cxx11-cu128-x86_64-linux/adam_atan2/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _adam_atan2_40f2269
|
| 3 |
+
ops = torch.ops._adam_atan2_40f2269
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_adam_atan2_40f2269::{op_name}"
|