Update README.md with new model card content
Browse files
README.md
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: keras-hub
|
| 3 |
+
---
|
| 4 |
+
### Model Overview
|
| 5 |
+
# Model Summary
|
| 6 |
+
|
| 7 |
+
Mistral is a set of large language models published by the Mistral AI team. The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. Both pre-trained and instruction tuned models are available with 7 billion activated parameters.
|
| 8 |
+
|
| 9 |
+
Weights are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE) . Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
|
| 10 |
+
|
| 11 |
+
## Links
|
| 12 |
+
|
| 13 |
+
* [Mixtral Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/mixtral-quickstart-notebook)
|
| 14 |
+
* [Mixtral API Documentation](https://keras.io/keras_hub/api/models/mixtral/)
|
| 15 |
+
* [Mixtral Model Card](https://mistral.ai/news/mixtral-of-experts)
|
| 16 |
+
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
|
| 17 |
+
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
|
| 18 |
+
|
| 19 |
+
## Installation
|
| 20 |
+
|
| 21 |
+
Keras and KerasHub can be installed with:
|
| 22 |
+
|
| 23 |
+
```
|
| 24 |
+
pip install -U -q keras-hub
|
| 25 |
+
pip install -U -q keras
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
|
| 29 |
+
|
| 30 |
+
## Presets
|
| 31 |
+
|
| 32 |
+
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
|
| 33 |
+
|
| 34 |
+
| Preset name | Parameters | Description |
|
| 35 |
+
|---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
|
| 36 |
+
| mixtral_8_7b_en | 7B | 32-layer Mixtral MoE model with 7 billion active parameters and 8 experts per MoE layer. |
|
| 37 |
+
| mixtral_8_instruct_7b_en | 7B | Instruction fine-tuned 32-layer Mixtral MoE model with 7 billion active parameters and 8 experts per MoE layer. |
|
| 38 |
+
|
| 39 |
+
## Example Usage
|
| 40 |
+
```Python
|
| 41 |
+
|
| 42 |
+
import keras
|
| 43 |
+
import keras_hub
|
| 44 |
+
import numpy as np
|
| 45 |
+
|
| 46 |
+
# Basic text generation
|
| 47 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset("mixtral_8_instruct_7b_en")
|
| 48 |
+
mixtral_lm.generate("[INST] What is Keras? [/INST]", max_length=500)
|
| 49 |
+
|
| 50 |
+
# Generate with batched prompts
|
| 51 |
+
mixtral_lm.generate([
|
| 52 |
+
"[INST] What is Keras? [/INST]",
|
| 53 |
+
"[INST] Give me your best brownie recipe. [/INST]"
|
| 54 |
+
], max_length=500)
|
| 55 |
+
|
| 56 |
+
# Using different sampling strategies
|
| 57 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset("mixtral_8_instruct_7b_en")
|
| 58 |
+
# Greedy sampling
|
| 59 |
+
mixtral_lm.compile(sampler="greedy")
|
| 60 |
+
mixtral_lm.generate("I want to say", max_length=30)
|
| 61 |
+
|
| 62 |
+
# Beam search
|
| 63 |
+
mixtral_lm.compile(
|
| 64 |
+
sampler=keras_hub.samplers.BeamSampler(
|
| 65 |
+
num_beams=2,
|
| 66 |
+
top_k_experts=2, # MoE-specific: number of experts to use per token
|
| 67 |
+
)
|
| 68 |
+
)
|
| 69 |
+
mixtral_lm.generate("I want to say", max_length=30)
|
| 70 |
+
|
| 71 |
+
# Generate without preprocessing
|
| 72 |
+
prompt = {
|
| 73 |
+
"token_ids": np.array([[1, 315, 947, 298, 1315, 0, 0, 0, 0, 0]] * 2),
|
| 74 |
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset(
|
| 78 |
+
"mixtral_8_instruct_7b_en",
|
| 79 |
+
preprocessor=None,
|
| 80 |
+
dtype="bfloat16"
|
| 81 |
+
)
|
| 82 |
+
mixtral_lm.generate(
|
| 83 |
+
prompt,
|
| 84 |
+
num_experts=8, # Total number of experts per layer
|
| 85 |
+
top_k_experts=2, # Number of experts to use per token
|
| 86 |
+
router_aux_loss_coef=0.02 # Router auxiliary loss coefficient
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Training on a single batch
|
| 90 |
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
| 91 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset(
|
| 92 |
+
"mixtral_8_instruct_7b_en",
|
| 93 |
+
dtype="bfloat16"
|
| 94 |
+
)
|
| 95 |
+
mixtral_lm.fit(
|
| 96 |
+
x=features,
|
| 97 |
+
batch_size=2,
|
| 98 |
+
router_aux_loss_coef=0.02 # MoE-specific: router training loss
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Training without preprocessing
|
| 102 |
+
x = {
|
| 103 |
+
"token_ids": np.array([[1, 315, 947, 298, 1315, 369, 315, 837, 0, 0]] * 2),
|
| 104 |
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
| 105 |
+
}
|
| 106 |
+
y = np.array([[315, 947, 298, 1315, 369, 315, 837, 0, 0, 0]] * 2)
|
| 107 |
+
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 0, 0, 0]] * 2)
|
| 108 |
+
|
| 109 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset(
|
| 110 |
+
"mixtral_8_instruct_7b_en",
|
| 111 |
+
preprocessor=None,
|
| 112 |
+
dtype="bfloat16"
|
| 113 |
+
)
|
| 114 |
+
mixtral_lm.fit(
|
| 115 |
+
x=x,
|
| 116 |
+
y=y,
|
| 117 |
+
sample_weight=sw,
|
| 118 |
+
batch_size=2,
|
| 119 |
+
router_aux_loss_coef=0.02
|
| 120 |
+
)
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
## Example Usage with Hugging Face URI
|
| 124 |
+
|
| 125 |
+
```Python
|
| 126 |
+
|
| 127 |
+
import keras
|
| 128 |
+
import keras_hub
|
| 129 |
+
import numpy as np
|
| 130 |
+
|
| 131 |
+
# Basic text generation
|
| 132 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset("hf://keras/mixtral_8_instruct_7b_en")
|
| 133 |
+
mixtral_lm.generate("[INST] What is Keras? [/INST]", max_length=500)
|
| 134 |
+
|
| 135 |
+
# Generate with batched prompts
|
| 136 |
+
mixtral_lm.generate([
|
| 137 |
+
"[INST] What is Keras? [/INST]",
|
| 138 |
+
"[INST] Give me your best brownie recipe. [/INST]"
|
| 139 |
+
], max_length=500)
|
| 140 |
+
|
| 141 |
+
# Using different sampling strategies
|
| 142 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset("hf://keras/mixtral_8_instruct_7b_en")
|
| 143 |
+
# Greedy sampling
|
| 144 |
+
mixtral_lm.compile(sampler="greedy")
|
| 145 |
+
mixtral_lm.generate("I want to say", max_length=30)
|
| 146 |
+
|
| 147 |
+
# Beam search
|
| 148 |
+
mixtral_lm.compile(
|
| 149 |
+
sampler=keras_hub.samplers.BeamSampler(
|
| 150 |
+
num_beams=2,
|
| 151 |
+
top_k_experts=2, # MoE-specific: number of experts to use per token
|
| 152 |
+
)
|
| 153 |
+
)
|
| 154 |
+
mixtral_lm.generate("I want to say", max_length=30)
|
| 155 |
+
|
| 156 |
+
# Generate without preprocessing
|
| 157 |
+
prompt = {
|
| 158 |
+
"token_ids": np.array([[1, 315, 947, 298, 1315, 0, 0, 0, 0, 0]] * 2),
|
| 159 |
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset(
|
| 163 |
+
"hf://keras/mixtral_8_instruct_7b_en",
|
| 164 |
+
preprocessor=None,
|
| 165 |
+
dtype="bfloat16"
|
| 166 |
+
)
|
| 167 |
+
mixtral_lm.generate(
|
| 168 |
+
prompt,
|
| 169 |
+
num_experts=8, # Total number of experts per layer
|
| 170 |
+
top_k_experts=2, # Number of experts to use per token
|
| 171 |
+
router_aux_loss_coef=0.02 # Router auxiliary loss coefficient
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Training on a single batch
|
| 175 |
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
| 176 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset(
|
| 177 |
+
"hf://keras/mixtral_8_instruct_7b_en",
|
| 178 |
+
dtype="bfloat16"
|
| 179 |
+
)
|
| 180 |
+
mixtral_lm.fit(
|
| 181 |
+
x=features,
|
| 182 |
+
batch_size=2,
|
| 183 |
+
router_aux_loss_coef=0.02 # MoE-specific: router training loss
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Training without preprocessing
|
| 187 |
+
x = {
|
| 188 |
+
"token_ids": np.array([[1, 315, 947, 298, 1315, 369, 315, 837, 0, 0]] * 2),
|
| 189 |
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
| 190 |
+
}
|
| 191 |
+
y = np.array([[315, 947, 298, 1315, 369, 315, 837, 0, 0, 0]] * 2)
|
| 192 |
+
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 0, 0, 0]] * 2)
|
| 193 |
+
|
| 194 |
+
mixtral_lm = keras_hub.models.MixtralCausalLM.from_preset(
|
| 195 |
+
"hf://keras/mixtral_8_instruct_7b_en",
|
| 196 |
+
preprocessor=None,
|
| 197 |
+
dtype="bfloat16"
|
| 198 |
+
)
|
| 199 |
+
mixtral_lm.fit(
|
| 200 |
+
x=x,
|
| 201 |
+
y=y,
|
| 202 |
+
sample_weight=sw,
|
| 203 |
+
batch_size=2,
|
| 204 |
+
router_aux_loss_coef=0.02
|
| 205 |
+
)
|
| 206 |
+
```
|