--- license: apache-2.0 base_model: facebook/hubert-large-ls960-ft tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-large-ls960-ft-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.75 --- # hubert-large-ls960-ft-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8290 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1489 | 1.0 | 90 | 2.1400 | 0.24 | | 1.6277 | 2.0 | 180 | 1.6670 | 0.46 | | 1.5479 | 3.0 | 270 | 1.4687 | 0.47 | | 1.1795 | 4.0 | 360 | 1.3815 | 0.56 | | 1.1491 | 5.0 | 450 | 1.0969 | 0.63 | | 0.8421 | 6.0 | 540 | 1.0707 | 0.65 | | 1.1917 | 7.0 | 630 | 0.8761 | 0.71 | | 0.7243 | 8.0 | 720 | 0.8741 | 0.72 | | 0.6959 | 9.0 | 810 | 0.8417 | 0.76 | | 0.6921 | 10.0 | 900 | 0.8290 | 0.75 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1