Update README.md
Browse files
README.md
CHANGED
@@ -6,13 +6,48 @@ language:
|
|
6 |
tags:
|
7 |
- reinforcement-learning
|
8 |
- deep-reinforcement-learning
|
9 |
-
- robotics
|
10 |
- pytorch
|
11 |
- gymnasium
|
12 |
- collision-avoidance
|
13 |
- navigation
|
14 |
- self-driving
|
15 |
- autonomous-vehicle
|
|
|
16 |
---
|
17 |
|
18 |
-
This repository contains model weights for the agents performing in [RoadEnv](https://github.com/kengboon/RoadEnv).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
tags:
|
7 |
- reinforcement-learning
|
8 |
- deep-reinforcement-learning
|
|
|
9 |
- pytorch
|
10 |
- gymnasium
|
11 |
- collision-avoidance
|
12 |
- navigation
|
13 |
- self-driving
|
14 |
- autonomous-vehicle
|
15 |
+
- github:kengboon/RoadEnv
|
16 |
---
|
17 |
|
18 |
+
This repository contains model weights for the agents performing in [RoadEnv](https://github.com/kengboon/RoadEnv).
|
19 |
+
|
20 |
+
## Models
|
21 |
+
- Recurrent Soft Actor-Critic (RSAC/SAC-LSTM) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-lstm-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2_lstm.py)]
|
22 |
+
- Recurrent Soft Actor-Critic Share (RSAC-Share) [[Paper](https://arxiv.org/abs/2110.12628)] [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm_share.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-rsac_share.py)]
|
23 |
+
- Soft Actor-Critic (SAC) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2.py)]
|
24 |
+
|
25 |
+
## Usage
|
26 |
+
```Python
|
27 |
+
# Register environment
|
28 |
+
from road_env import register_road_envs
|
29 |
+
register_road_envs()
|
30 |
+
|
31 |
+
# Make environment
|
32 |
+
import gymnasium as gym
|
33 |
+
env = gym.make('urban-road-v0', render_mode='rgb_array')
|
34 |
+
|
35 |
+
# Configure parameters (example)
|
36 |
+
env.configure({
|
37 |
+
"random_seed": None,
|
38 |
+
"duration": 60,
|
39 |
+
})
|
40 |
+
|
41 |
+
obs, info = env.reset()
|
42 |
+
|
43 |
+
# Graphic display
|
44 |
+
import matplotlib.pyplot as plt
|
45 |
+
plt.imshow(env.render())
|
46 |
+
|
47 |
+
# Execution
|
48 |
+
done = truncated = False
|
49 |
+
while not (done or truncated):
|
50 |
+
action = ... # Your agent code here
|
51 |
+
obs, reward, done, truncated, info = env.step(action)
|
52 |
+
env.render() # Update graphic
|
53 |
+
```
|