kengboon commited on
Commit
1e2b3d7
·
1 Parent(s): bdffe78

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -2
README.md CHANGED
@@ -6,13 +6,48 @@ language:
6
  tags:
7
  - reinforcement-learning
8
  - deep-reinforcement-learning
9
- - robotics
10
  - pytorch
11
  - gymnasium
12
  - collision-avoidance
13
  - navigation
14
  - self-driving
15
  - autonomous-vehicle
 
16
  ---
17
 
18
- This repository contains model weights for the agents performing in [RoadEnv](https://github.com/kengboon/RoadEnv).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  tags:
7
  - reinforcement-learning
8
  - deep-reinforcement-learning
 
9
  - pytorch
10
  - gymnasium
11
  - collision-avoidance
12
  - navigation
13
  - self-driving
14
  - autonomous-vehicle
15
+ - github:kengboon/RoadEnv
16
  ---
17
 
18
+ This repository contains model weights for the agents performing in [RoadEnv](https://github.com/kengboon/RoadEnv).
19
+
20
+ ## Models
21
+ - Recurrent Soft Actor-Critic (RSAC/SAC-LSTM) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-lstm-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2_lstm.py)]
22
+ - Recurrent Soft Actor-Critic Share (RSAC-Share) [[Paper](https://arxiv.org/abs/2110.12628)] [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm_share.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-rsac_share.py)]
23
+ - Soft Actor-Critic (SAC) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2.py)]
24
+
25
+ ## Usage
26
+ ```Python
27
+ # Register environment
28
+ from road_env import register_road_envs
29
+ register_road_envs()
30
+
31
+ # Make environment
32
+ import gymnasium as gym
33
+ env = gym.make('urban-road-v0', render_mode='rgb_array')
34
+
35
+ # Configure parameters (example)
36
+ env.configure({
37
+ "random_seed": None,
38
+ "duration": 60,
39
+ })
40
+
41
+ obs, info = env.reset()
42
+
43
+ # Graphic display
44
+ import matplotlib.pyplot as plt
45
+ plt.imshow(env.render())
46
+
47
+ # Execution
48
+ done = truncated = False
49
+ while not (done or truncated):
50
+ action = ... # Your agent code here
51
+ obs, reward, done, truncated, info = env.step(action)
52
+ env.render() # Update graphic
53
+ ```