--- library_name: transformers license: other base_model: apple/mobilevit-x-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: mobilevit-x-small results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.995850622406639 --- # mobilevit-x-small This model is a fine-tuned version of [apple/mobilevit-x-small](https://huggingface.co/apple/mobilevit-x-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0196 - Accuracy: 0.9959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6911 | 1.0 | 34 | 0.6932 | 0.5083 | | 0.6584 | 2.0 | 68 | 0.6287 | 0.7510 | | 0.5388 | 3.0 | 102 | 0.4852 | 0.8734 | | 0.3891 | 4.0 | 136 | 0.3065 | 0.9357 | | 0.2915 | 5.0 | 170 | 0.2005 | 0.9647 | | 0.2319 | 6.0 | 204 | 0.1498 | 0.9689 | | 0.2038 | 7.0 | 238 | 0.1228 | 0.9710 | | 0.1641 | 8.0 | 272 | 0.0892 | 0.9855 | | 0.1525 | 9.0 | 306 | 0.0778 | 0.9834 | | 0.1584 | 10.0 | 340 | 0.0565 | 0.9896 | | 0.1194 | 11.0 | 374 | 0.0491 | 0.9917 | | 0.1222 | 12.0 | 408 | 0.0436 | 0.9896 | | 0.1229 | 13.0 | 442 | 0.0360 | 0.9979 | | 0.1334 | 14.0 | 476 | 0.0326 | 0.9959 | | 0.122 | 15.0 | 510 | 0.0425 | 0.9896 | | 0.096 | 16.0 | 544 | 0.0315 | 0.9959 | | 0.0989 | 17.0 | 578 | 0.0303 | 0.9938 | | 0.1085 | 18.0 | 612 | 0.0262 | 0.9959 | | 0.0957 | 19.0 | 646 | 0.0232 | 0.9959 | | 0.1129 | 20.0 | 680 | 0.0266 | 0.9959 | | 0.0843 | 21.0 | 714 | 0.0234 | 0.9959 | | 0.0868 | 22.0 | 748 | 0.0217 | 0.9959 | | 0.0867 | 23.0 | 782 | 0.0233 | 0.9959 | | 0.0947 | 24.0 | 816 | 0.0204 | 0.9959 | | 0.0786 | 25.0 | 850 | 0.0199 | 0.9959 | | 0.1009 | 26.0 | 884 | 0.0212 | 0.9959 | | 0.0785 | 27.0 | 918 | 0.0204 | 0.9959 | | 0.0811 | 28.0 | 952 | 0.0180 | 0.9959 | | 0.0883 | 29.0 | 986 | 0.0193 | 0.9959 | | 0.0988 | 30.0 | 1020 | 0.0196 | 0.9959 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1