Commit 
							
							·
						
						a8a63dd
	
0
								Parent(s):
							
							
init
Browse files- README.md +28 -0
- convert_mvdream_to_diffusers.py +408 -0
- main.py +11 -0
- mvdream/attention.py +352 -0
- mvdream/models.py +775 -0
- mvdream/pipeline_mvdream.py +484 -0
- mvdream/util.py +320 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # MVDream-hf
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            modified from https://github.com/KokeCacao/mvdream-hf.
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            ### convert weights
         | 
| 6 | 
            +
            ```bash
         | 
| 7 | 
            +
            # download original ckpt
         | 
| 8 | 
            +
            wget https://huggingface.co/MVDream/MVDream/resolve/main/sd-v2.1-base-4view.pt
         | 
| 9 | 
            +
            wget https://raw.githubusercontent.com/bytedance/MVDream/main/mvdream/configs/sd-v2-base.yaml
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            # convert
         | 
| 12 | 
            +
            python convert_mvdream_to_diffusers.py --checkpoint_path ./sd-v2.1-base-4view.pt --dump_path ./weights --original_config_file ./sd-v2-base.yaml --half --to_safetensors --test
         | 
| 13 | 
            +
            ```
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            ### run pipeline
         | 
| 16 | 
            +
            ```python
         | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            import kiui
         | 
| 19 | 
            +
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            pipe = MVDreamStableDiffusionPipeline.from_pretrained('./weights', torch_dtype=torch.float16)
         | 
| 22 | 
            +
            pipe = pipe.to("cuda")
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            prompt = "a photo of an astronaut riding a horse on mars"
         | 
| 25 | 
            +
            image = pipe(prompt) # np.ndarray [4, 256, 256, 3]
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            kiui.vis.plot_image(image)
         | 
| 28 | 
            +
            ```
         | 
    	
        convert_mvdream_to_diffusers.py
    ADDED
    
    | @@ -0,0 +1,408 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import argparse
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import sys
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            sys.path.insert(0, '.')
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from diffusers.models import (
         | 
| 10 | 
            +
                AutoencoderKL,
         | 
| 11 | 
            +
            )
         | 
| 12 | 
            +
            from omegaconf import OmegaConf
         | 
| 13 | 
            +
            from diffusers.schedulers import DDIMScheduler
         | 
| 14 | 
            +
            from diffusers.utils import logging
         | 
| 15 | 
            +
            from typing import Any
         | 
| 16 | 
            +
            from accelerate import init_empty_weights
         | 
| 17 | 
            +
            from accelerate.utils import set_module_tensor_to_device
         | 
| 18 | 
            +
            from mvdream.models import MultiViewUNetWrapperModel
         | 
| 19 | 
            +
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 20 | 
            +
            from transformers import CLIPTokenizer, CLIPTextModel
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None):
         | 
| 26 | 
            +
                """
         | 
| 27 | 
            +
                This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
         | 
| 28 | 
            +
                attention layers, and takes into account additional replacements that may arise.
         | 
| 29 | 
            +
                Assigns the weights to the new checkpoint.
         | 
| 30 | 
            +
                """
         | 
| 31 | 
            +
                assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                # Splits the attention layers into three variables.
         | 
| 34 | 
            +
                if attention_paths_to_split is not None:
         | 
| 35 | 
            +
                    for path, path_map in attention_paths_to_split.items():
         | 
| 36 | 
            +
                        old_tensor = old_checkpoint[path]
         | 
| 37 | 
            +
                        channels = old_tensor.shape[0] // 3
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                        target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                        assert config is not None
         | 
| 42 | 
            +
                        num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                        old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
         | 
| 45 | 
            +
                        query, key, value = old_tensor.split(channels // num_heads, dim=1)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                        checkpoint[path_map["query"]] = query.reshape(target_shape)
         | 
| 48 | 
            +
                        checkpoint[path_map["key"]] = key.reshape(target_shape)
         | 
| 49 | 
            +
                        checkpoint[path_map["value"]] = value.reshape(target_shape)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                for path in paths:
         | 
| 52 | 
            +
                    new_path = path["new"]
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    # These have already been assigned
         | 
| 55 | 
            +
                    if attention_paths_to_split is not None and new_path in attention_paths_to_split:
         | 
| 56 | 
            +
                        continue
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    # Global renaming happens here
         | 
| 59 | 
            +
                    new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
         | 
| 60 | 
            +
                    new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
         | 
| 61 | 
            +
                    new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    if additional_replacements is not None:
         | 
| 64 | 
            +
                        for replacement in additional_replacements:
         | 
| 65 | 
            +
                            new_path = new_path.replace(replacement["old"], replacement["new"])
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    # proj_attn.weight has to be converted from conv 1D to linear
         | 
| 68 | 
            +
                    is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
         | 
| 69 | 
            +
                    shape = old_checkpoint[path["old"]].shape
         | 
| 70 | 
            +
                    if is_attn_weight and len(shape) == 3:
         | 
| 71 | 
            +
                        checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
         | 
| 72 | 
            +
                    elif is_attn_weight and len(shape) == 4:
         | 
| 73 | 
            +
                        checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
         | 
| 74 | 
            +
                    else:
         | 
| 75 | 
            +
                        checkpoint[new_path] = old_checkpoint[path["old"]]
         | 
| 76 | 
            +
             | 
| 77 | 
            +
             | 
| 78 | 
            +
            def shave_segments(path, n_shave_prefix_segments=1):
         | 
| 79 | 
            +
                """
         | 
| 80 | 
            +
                Removes segments. Positive values shave the first segments, negative shave the last segments.
         | 
| 81 | 
            +
                """
         | 
| 82 | 
            +
                if n_shave_prefix_segments >= 0:
         | 
| 83 | 
            +
                    return ".".join(path.split(".")[n_shave_prefix_segments:])
         | 
| 84 | 
            +
                else:
         | 
| 85 | 
            +
                    return ".".join(path.split(".")[:n_shave_prefix_segments])
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            def create_vae_diffusers_config(original_config, image_size: int):
         | 
| 89 | 
            +
                """
         | 
| 90 | 
            +
                Creates a config for the diffusers based on the config of the LDM model.
         | 
| 91 | 
            +
                """
         | 
| 92 | 
            +
                vae_params = original_config.model.params.first_stage_config.params.ddconfig
         | 
| 93 | 
            +
                _ = original_config.model.params.first_stage_config.params.embed_dim
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
         | 
| 96 | 
            +
                down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
         | 
| 97 | 
            +
                up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                config = {
         | 
| 100 | 
            +
                    "sample_size": image_size,
         | 
| 101 | 
            +
                    "in_channels": vae_params.in_channels,
         | 
| 102 | 
            +
                    "out_channels": vae_params.out_ch,
         | 
| 103 | 
            +
                    "down_block_types": tuple(down_block_types),
         | 
| 104 | 
            +
                    "up_block_types": tuple(up_block_types),
         | 
| 105 | 
            +
                    "block_out_channels": tuple(block_out_channels),
         | 
| 106 | 
            +
                    "latent_channels": vae_params.z_channels,
         | 
| 107 | 
            +
                    "layers_per_block": vae_params.num_res_blocks,
         | 
| 108 | 
            +
                }
         | 
| 109 | 
            +
                return config
         | 
| 110 | 
            +
             | 
| 111 | 
            +
             | 
| 112 | 
            +
            def convert_ldm_vae_checkpoint(checkpoint, config):
         | 
| 113 | 
            +
                # extract state dict for VAE
         | 
| 114 | 
            +
                vae_state_dict = {}
         | 
| 115 | 
            +
                vae_key = "first_stage_model."
         | 
| 116 | 
            +
                keys = list(checkpoint.keys())
         | 
| 117 | 
            +
                for key in keys:
         | 
| 118 | 
            +
                    if key.startswith(vae_key):
         | 
| 119 | 
            +
                        vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                new_checkpoint = {}
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
         | 
| 124 | 
            +
                new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
         | 
| 125 | 
            +
                new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
         | 
| 126 | 
            +
                new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
         | 
| 127 | 
            +
                new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
         | 
| 128 | 
            +
                new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
         | 
| 131 | 
            +
                new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
         | 
| 132 | 
            +
                new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
         | 
| 133 | 
            +
                new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
         | 
| 134 | 
            +
                new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
         | 
| 135 | 
            +
                new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
         | 
| 138 | 
            +
                new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
         | 
| 139 | 
            +
                new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
         | 
| 140 | 
            +
                new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                # Retrieves the keys for the encoder down blocks only
         | 
| 143 | 
            +
                num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
         | 
| 144 | 
            +
                down_blocks = {layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)}
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                # Retrieves the keys for the decoder up blocks only
         | 
| 147 | 
            +
                num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
         | 
| 148 | 
            +
                up_blocks = {layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)}
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                for i in range(num_down_blocks):
         | 
| 151 | 
            +
                    resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
         | 
| 154 | 
            +
                        new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
         | 
| 155 | 
            +
                        new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 158 | 
            +
                    meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
         | 
| 159 | 
            +
                    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
         | 
| 162 | 
            +
                num_mid_res_blocks = 2
         | 
| 163 | 
            +
                for i in range(1, num_mid_res_blocks + 1):
         | 
| 164 | 
            +
                    resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 167 | 
            +
                    meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
         | 
| 168 | 
            +
                    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
         | 
| 171 | 
            +
                paths = renew_vae_attention_paths(mid_attentions)
         | 
| 172 | 
            +
                meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
         | 
| 173 | 
            +
                assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
         | 
| 174 | 
            +
                conv_attn_to_linear(new_checkpoint)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                for i in range(num_up_blocks):
         | 
| 177 | 
            +
                    block_id = num_up_blocks - 1 - i
         | 
| 178 | 
            +
                    resnets = [key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key]
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
         | 
| 181 | 
            +
                        new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
         | 
| 182 | 
            +
                        new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 185 | 
            +
                    meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
         | 
| 186 | 
            +
                    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
         | 
| 189 | 
            +
                num_mid_res_blocks = 2
         | 
| 190 | 
            +
                for i in range(1, num_mid_res_blocks + 1):
         | 
| 191 | 
            +
                    resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 194 | 
            +
                    meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
         | 
| 195 | 
            +
                    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
         | 
| 198 | 
            +
                paths = renew_vae_attention_paths(mid_attentions)
         | 
| 199 | 
            +
                meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
         | 
| 200 | 
            +
                assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
         | 
| 201 | 
            +
                conv_attn_to_linear(new_checkpoint)
         | 
| 202 | 
            +
                return new_checkpoint
         | 
| 203 | 
            +
             | 
| 204 | 
            +
             | 
| 205 | 
            +
            def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
         | 
| 206 | 
            +
                """
         | 
| 207 | 
            +
                Updates paths inside resnets to the new naming scheme (local renaming)
         | 
| 208 | 
            +
                """
         | 
| 209 | 
            +
                mapping = []
         | 
| 210 | 
            +
                for old_item in old_list:
         | 
| 211 | 
            +
                    new_item = old_item
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    new_item = new_item.replace("nin_shortcut", "conv_shortcut")
         | 
| 214 | 
            +
                    new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    mapping.append({"old": old_item, "new": new_item})
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                return mapping
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
            def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
         | 
| 222 | 
            +
                """
         | 
| 223 | 
            +
                Updates paths inside attentions to the new naming scheme (local renaming)
         | 
| 224 | 
            +
                """
         | 
| 225 | 
            +
                mapping = []
         | 
| 226 | 
            +
                for old_item in old_list:
         | 
| 227 | 
            +
                    new_item = old_item
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    new_item = new_item.replace("norm.weight", "group_norm.weight")
         | 
| 230 | 
            +
                    new_item = new_item.replace("norm.bias", "group_norm.bias")
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    new_item = new_item.replace("q.weight", "to_q.weight")
         | 
| 233 | 
            +
                    new_item = new_item.replace("q.bias", "to_q.bias")
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    new_item = new_item.replace("k.weight", "to_k.weight")
         | 
| 236 | 
            +
                    new_item = new_item.replace("k.bias", "to_k.bias")
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    new_item = new_item.replace("v.weight", "to_v.weight")
         | 
| 239 | 
            +
                    new_item = new_item.replace("v.bias", "to_v.bias")
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
         | 
| 242 | 
            +
                    new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    mapping.append({"old": old_item, "new": new_item})
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                return mapping
         | 
| 249 | 
            +
             | 
| 250 | 
            +
             | 
| 251 | 
            +
            def conv_attn_to_linear(checkpoint):
         | 
| 252 | 
            +
                keys = list(checkpoint.keys())
         | 
| 253 | 
            +
                attn_keys = ["query.weight", "key.weight", "value.weight"]
         | 
| 254 | 
            +
                for key in keys:
         | 
| 255 | 
            +
                    if ".".join(key.split(".")[-2:]) in attn_keys:
         | 
| 256 | 
            +
                        if checkpoint[key].ndim > 2:
         | 
| 257 | 
            +
                            checkpoint[key] = checkpoint[key][:, :, 0, 0]
         | 
| 258 | 
            +
                    elif "proj_attn.weight" in key:
         | 
| 259 | 
            +
                        if checkpoint[key].ndim > 2:
         | 
| 260 | 
            +
                            checkpoint[key] = checkpoint[key][:, :, 0]
         | 
| 261 | 
            +
             | 
| 262 | 
            +
            def create_unet_config(original_config) -> Any:
         | 
| 263 | 
            +
                return OmegaConf.to_container(original_config.model.params.unet_config.params, resolve=True)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
            def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
         | 
| 266 | 
            +
                checkpoint = torch.load(checkpoint_path, map_location=device)
         | 
| 267 | 
            +
                # print(f"Checkpoint: {checkpoint.keys()}")
         | 
| 268 | 
            +
                torch.cuda.empty_cache()
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                original_config = OmegaConf.load(original_config_file)
         | 
| 271 | 
            +
                # print(f"Original Config: {original_config}")
         | 
| 272 | 
            +
                prediction_type = "epsilon"
         | 
| 273 | 
            +
                image_size = 256
         | 
| 274 | 
            +
                num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000
         | 
| 275 | 
            +
                beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
         | 
| 276 | 
            +
                beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
         | 
| 277 | 
            +
                scheduler = DDIMScheduler(
         | 
| 278 | 
            +
                    beta_end=beta_end,
         | 
| 279 | 
            +
                    beta_schedule="scaled_linear",
         | 
| 280 | 
            +
                    beta_start=beta_start,
         | 
| 281 | 
            +
                    num_train_timesteps=num_train_timesteps,
         | 
| 282 | 
            +
                    steps_offset=1,
         | 
| 283 | 
            +
                    clip_sample=False,
         | 
| 284 | 
            +
                    set_alpha_to_one=False,
         | 
| 285 | 
            +
                    prediction_type=prediction_type,
         | 
| 286 | 
            +
                )
         | 
| 287 | 
            +
                scheduler.register_to_config(clip_sample=False)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                # Convert the UNet2DConditionModel model.
         | 
| 290 | 
            +
                # upcast_attention = None
         | 
| 291 | 
            +
                # unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
         | 
| 292 | 
            +
                # unet_config["upcast_attention"] = upcast_attention
         | 
| 293 | 
            +
                # with init_empty_weights():
         | 
| 294 | 
            +
                #     unet = UNet2DConditionModel(**unet_config)
         | 
| 295 | 
            +
                # converted_unet_checkpoint = convert_ldm_unet_checkpoint(
         | 
| 296 | 
            +
                #     checkpoint, unet_config, path=None, extract_ema=extract_ema
         | 
| 297 | 
            +
                # )
         | 
| 298 | 
            +
                # print(f"Unet Config: {original_config.model.params.unet_config.params}")
         | 
| 299 | 
            +
                unet_config = create_unet_config(original_config)
         | 
| 300 | 
            +
                unet: MultiViewUNetWrapperModel = MultiViewUNetWrapperModel(**unet_config)
         | 
| 301 | 
            +
                unet.register_to_config(**unet_config)
         | 
| 302 | 
            +
                # print(f"Unet State Dict: {unet.state_dict().keys()}")
         | 
| 303 | 
            +
                unet.load_state_dict({key.replace("model.diffusion_model.", "unet."): value for key, value in checkpoint.items() if key.replace("model.diffusion_model.", "unet.") in unet.state_dict()})
         | 
| 304 | 
            +
                for param_name, param in unet.state_dict().items():
         | 
| 305 | 
            +
                    set_module_tensor_to_device(unet, param_name, device=device, value=param)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                # Convert the VAE model.
         | 
| 308 | 
            +
                vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
         | 
| 309 | 
            +
                converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                if ("model" in original_config and "params" in original_config.model and "scale_factor" in original_config.model.params):
         | 
| 312 | 
            +
                    vae_scaling_factor = original_config.model.params.scale_factor
         | 
| 313 | 
            +
                else:
         | 
| 314 | 
            +
                    vae_scaling_factor = 0.18215 # default SD scaling factor
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                vae_config["scaling_factor"] = vae_scaling_factor
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                with init_empty_weights():
         | 
| 319 | 
            +
                    vae = AutoencoderKL(**vae_config)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                for param_name, param in converted_vae_checkpoint.items():
         | 
| 322 | 
            +
                    set_module_tensor_to_device(vae, param_name, device=device, value=param)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                if original_config.model.params.unet_config.params.context_dim == 768:
         | 
| 325 | 
            +
                    tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
         | 
| 326 | 
            +
                    text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device=device) # type: ignore
         | 
| 327 | 
            +
                elif original_config.model.params.unet_config.params.context_dim == 1024:
         | 
| 328 | 
            +
                    tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer")
         | 
| 329 | 
            +
                    text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore
         | 
| 330 | 
            +
                else:
         | 
| 331 | 
            +
                    raise ValueError(f"Unknown context_dim: {original_config.model.paams.unet_config.params.context_dim}")
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                pipe = MVDreamStableDiffusionPipeline(
         | 
| 334 | 
            +
                    vae=vae,
         | 
| 335 | 
            +
                    unet=unet,
         | 
| 336 | 
            +
                    tokenizer=tokenizer,
         | 
| 337 | 
            +
                    text_encoder=text_encoder,
         | 
| 338 | 
            +
                    scheduler=scheduler,
         | 
| 339 | 
            +
                )
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                return pipe
         | 
| 342 | 
            +
             | 
| 343 | 
            +
             | 
| 344 | 
            +
            if __name__ == "__main__":
         | 
| 345 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert.")
         | 
| 348 | 
            +
                parser.add_argument(
         | 
| 349 | 
            +
                    "--original_config_file",
         | 
| 350 | 
            +
                    default=None,
         | 
| 351 | 
            +
                    type=str,
         | 
| 352 | 
            +
                    help="The YAML config file corresponding to the original architecture.",
         | 
| 353 | 
            +
                )
         | 
| 354 | 
            +
                parser.add_argument(
         | 
| 355 | 
            +
                    "--to_safetensors",
         | 
| 356 | 
            +
                    action="store_true",
         | 
| 357 | 
            +
                    help="Whether to store pipeline in safetensors format or not.",
         | 
| 358 | 
            +
                )
         | 
| 359 | 
            +
                parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
         | 
| 360 | 
            +
                parser.add_argument("--test", action="store_true", help="Whether to test inference after convertion.")
         | 
| 361 | 
            +
                parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
         | 
| 362 | 
            +
                parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
         | 
| 363 | 
            +
                args = parser.parse_args()
         | 
| 364 | 
            +
                
         | 
| 365 | 
            +
                args.device = torch.device(args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu")
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                pipe = convert_from_original_mvdream_ckpt(
         | 
| 368 | 
            +
                    checkpoint_path=args.checkpoint_path,
         | 
| 369 | 
            +
                    original_config_file=args.original_config_file,
         | 
| 370 | 
            +
                    device=args.device,
         | 
| 371 | 
            +
                )
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                if args.half:
         | 
| 374 | 
            +
                    pipe.to(torch_dtype=torch.float16)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                print(f"Saving pipeline to {args.dump_path}...")
         | 
| 377 | 
            +
                pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
         | 
| 378 | 
            +
                
         | 
| 379 | 
            +
                if args.test:
         | 
| 380 | 
            +
                    try:
         | 
| 381 | 
            +
                        print(f"Testing each subcomponent of the pipeline...")
         | 
| 382 | 
            +
                        images = pipe(
         | 
| 383 | 
            +
                            prompt="Head of Hatsune Miku",
         | 
| 384 | 
            +
                            negative_prompt="painting, bad quality, flat",
         | 
| 385 | 
            +
                            output_type="pil",
         | 
| 386 | 
            +
                            guidance_scale=7.5,
         | 
| 387 | 
            +
                            num_inference_steps=50,
         | 
| 388 | 
            +
                            device=args.device,
         | 
| 389 | 
            +
                        )
         | 
| 390 | 
            +
                        for i, image in enumerate(images):
         | 
| 391 | 
            +
                            image.save(f"image_{i}.png") # type: ignore
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                        print(f"Testing entire pipeline...")
         | 
| 394 | 
            +
                        loaded_pipe: MVDreamStableDiffusionPipeline = MVDreamStableDiffusionPipeline.from_pretrained(args.dump_path, safe_serialization=args.to_safetensors) # type: ignore
         | 
| 395 | 
            +
                        images = loaded_pipe(
         | 
| 396 | 
            +
                            prompt="Head of Hatsune Miku",
         | 
| 397 | 
            +
                            negative_prompt="painting, bad quality, flat",
         | 
| 398 | 
            +
                            output_type="pil",
         | 
| 399 | 
            +
                            guidance_scale=7.5,
         | 
| 400 | 
            +
                            num_inference_steps=50,
         | 
| 401 | 
            +
                            device=args.device,
         | 
| 402 | 
            +
                        )
         | 
| 403 | 
            +
                        for i, image in enumerate(images):
         | 
| 404 | 
            +
                            image.save(f"image_{i}.png") # type: ignore
         | 
| 405 | 
            +
                    except Exception as e:
         | 
| 406 | 
            +
                        print(f"Failed to test inference: {e}")
         | 
| 407 | 
            +
                        raise e from e
         | 
| 408 | 
            +
                    print("Inference test passed!")
         | 
    	
        main.py
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import kiui
         | 
| 3 | 
            +
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            pipe = MVDreamStableDiffusionPipeline.from_pretrained('./weights', torch_dtype=torch.float16)
         | 
| 6 | 
            +
            pipe = pipe.to("cuda")
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            prompt = "a photo of an astronaut riding a horse on mars"
         | 
| 9 | 
            +
            image = pipe(prompt)
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            kiui.vis.plot_image(image)
         | 
    	
        mvdream/attention.py
    ADDED
    
    | @@ -0,0 +1,352 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # obtained and modified from https://github.com/bytedance/MVDream
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import math
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from inspect import isfunction
         | 
| 8 | 
            +
            from torch import nn, einsum
         | 
| 9 | 
            +
            from torch.amp.autocast_mode import autocast
         | 
| 10 | 
            +
            from einops import rearrange, repeat
         | 
| 11 | 
            +
            from typing import Optional, Any
         | 
| 12 | 
            +
            from .util import checkpoint
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            try:
         | 
| 15 | 
            +
                import xformers # type: ignore
         | 
| 16 | 
            +
                import xformers.ops # type: ignore
         | 
| 17 | 
            +
                XFORMERS_IS_AVAILBLE = True
         | 
| 18 | 
            +
            except:
         | 
| 19 | 
            +
                XFORMERS_IS_AVAILBLE = False
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # CrossAttn precision handling
         | 
| 22 | 
            +
            import os
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            def uniq(arr):
         | 
| 28 | 
            +
                return {el: True for el in arr}.keys()
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            def default(val, d):
         | 
| 32 | 
            +
                if val is not None:
         | 
| 33 | 
            +
                    return val
         | 
| 34 | 
            +
                return d() if isfunction(d) else d
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            def max_neg_value(t):
         | 
| 38 | 
            +
                return -torch.finfo(t.dtype).max
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            def init_(tensor):
         | 
| 42 | 
            +
                dim = tensor.shape[-1]
         | 
| 43 | 
            +
                std = 1 / math.sqrt(dim)
         | 
| 44 | 
            +
                tensor.uniform_(-std, std)
         | 
| 45 | 
            +
                return tensor
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            # feedforward
         | 
| 49 | 
            +
            class GEGLU(nn.Module):
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def __init__(self, dim_in, dim_out):
         | 
| 52 | 
            +
                    super().__init__()
         | 
| 53 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                def forward(self, x):
         | 
| 56 | 
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         | 
| 57 | 
            +
                    return x * F.gelu(gate)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            class FeedForward(nn.Module):
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         | 
| 63 | 
            +
                    super().__init__()
         | 
| 64 | 
            +
                    inner_dim = int(dim * mult)
         | 
| 65 | 
            +
                    dim_out = default(dim_out, dim)
         | 
| 66 | 
            +
                    project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                def forward(self, x):
         | 
| 71 | 
            +
                    return self.net(x)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
            def zero_module(module):
         | 
| 75 | 
            +
                """
         | 
| 76 | 
            +
                Zero out the parameters of a module and return it.
         | 
| 77 | 
            +
                """
         | 
| 78 | 
            +
                for p in module.parameters():
         | 
| 79 | 
            +
                    p.detach().zero_()
         | 
| 80 | 
            +
                return module
         | 
| 81 | 
            +
             | 
| 82 | 
            +
             | 
| 83 | 
            +
            def Normalize(in_channels):
         | 
| 84 | 
            +
                return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            class SpatialSelfAttention(nn.Module):
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                def __init__(self, in_channels):
         | 
| 90 | 
            +
                    super().__init__()
         | 
| 91 | 
            +
                    self.in_channels = in_channels
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    self.norm = Normalize(in_channels)
         | 
| 94 | 
            +
                    self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 95 | 
            +
                    self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 96 | 
            +
                    self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 97 | 
            +
                    self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                def forward(self, x):
         | 
| 100 | 
            +
                    h_ = x
         | 
| 101 | 
            +
                    h_ = self.norm(h_)
         | 
| 102 | 
            +
                    q = self.q(h_)
         | 
| 103 | 
            +
                    k = self.k(h_)
         | 
| 104 | 
            +
                    v = self.v(h_)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    # compute attention
         | 
| 107 | 
            +
                    b, c, h, w = q.shape
         | 
| 108 | 
            +
                    q = rearrange(q, 'b c h w -> b (h w) c')
         | 
| 109 | 
            +
                    k = rearrange(k, 'b c h w -> b c (h w)')
         | 
| 110 | 
            +
                    w_ = torch.einsum('bij,bjk->bik', q, k)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    w_ = w_ * (int(c)**(-0.5))
         | 
| 113 | 
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    # attend to values
         | 
| 116 | 
            +
                    v = rearrange(v, 'b c h w -> b c (h w)')
         | 
| 117 | 
            +
                    w_ = rearrange(w_, 'b i j -> b j i')
         | 
| 118 | 
            +
                    h_ = torch.einsum('bij,bjk->bik', v, w_)
         | 
| 119 | 
            +
                    h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
         | 
| 120 | 
            +
                    h_ = self.proj_out(h_)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    return x + h_
         | 
| 123 | 
            +
             | 
| 124 | 
            +
             | 
| 125 | 
            +
            class CrossAttention(nn.Module):
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
         | 
| 128 | 
            +
                    super().__init__()
         | 
| 129 | 
            +
                    inner_dim = dim_head * heads
         | 
| 130 | 
            +
                    context_dim = default(context_dim, query_dim)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    self.scale = dim_head**-0.5
         | 
| 133 | 
            +
                    self.heads = heads
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 136 | 
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 137 | 
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                def forward(self, x, context=None, mask=None):
         | 
| 142 | 
            +
                    h = self.heads
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    q = self.to_q(x)
         | 
| 145 | 
            +
                    context = default(context, x)
         | 
| 146 | 
            +
                    k = self.to_k(context)
         | 
| 147 | 
            +
                    v = self.to_v(context)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    # force cast to fp32 to avoid overflowing
         | 
| 152 | 
            +
                    if _ATTN_PRECISION == "fp32":
         | 
| 153 | 
            +
                        with autocast(enabled=False, device_type='cuda'):
         | 
| 154 | 
            +
                            q, k = q.float(), k.float()
         | 
| 155 | 
            +
                            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
         | 
| 156 | 
            +
                    else:
         | 
| 157 | 
            +
                        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    del q, k
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    if mask is not None:
         | 
| 162 | 
            +
                        mask = rearrange(mask, 'b ... -> b (...)')
         | 
| 163 | 
            +
                        max_neg_value = -torch.finfo(sim.dtype).max
         | 
| 164 | 
            +
                        mask = repeat(mask, 'b j -> (b h) () j', h=h)
         | 
| 165 | 
            +
                        sim.masked_fill_(~mask, max_neg_value)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    # attention, what we cannot get enough of
         | 
| 168 | 
            +
                    sim = sim.softmax(dim=-1)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    out = einsum('b i j, b j d -> b i d', sim, v)
         | 
| 171 | 
            +
                    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
         | 
| 172 | 
            +
                    return self.to_out(out)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
             | 
| 175 | 
            +
            class MemoryEfficientCrossAttention(nn.Module):
         | 
| 176 | 
            +
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         | 
| 177 | 
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
         | 
| 178 | 
            +
                    super().__init__()
         | 
| 179 | 
            +
                    # print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using {heads} heads.")
         | 
| 180 | 
            +
                    inner_dim = dim_head * heads
         | 
| 181 | 
            +
                    context_dim = default(context_dim, query_dim)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    self.heads = heads
         | 
| 184 | 
            +
                    self.dim_head = dim_head
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 187 | 
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 188 | 
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
         | 
| 191 | 
            +
                    self.attention_op: Optional[Any] = None
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                def forward(self, x, context=None, mask=None):
         | 
| 194 | 
            +
                    q = self.to_q(x)
         | 
| 195 | 
            +
                    context = default(context, x)
         | 
| 196 | 
            +
                    k = self.to_k(context)
         | 
| 197 | 
            +
                    v = self.to_v(context)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    b, _, _ = q.shape
         | 
| 200 | 
            +
                    q, k, v = map(
         | 
| 201 | 
            +
                        lambda t: t.unsqueeze(3).reshape(b, t.shape[1], self.heads, self.dim_head).permute(0, 2, 1, 3).reshape(b * self.heads, t.shape[1], self.dim_head).contiguous(),
         | 
| 202 | 
            +
                        (q, k, v),
         | 
| 203 | 
            +
                    )
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    # actually compute the attention, what we cannot get enough of
         | 
| 206 | 
            +
                    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    if mask is not None:
         | 
| 209 | 
            +
                        raise NotImplementedError
         | 
| 210 | 
            +
                    out = (out.unsqueeze(0).reshape(b, self.heads, out.shape[1], self.dim_head).permute(0, 2, 1, 3).reshape(b, out.shape[1], self.heads * self.dim_head))
         | 
| 211 | 
            +
                    return self.to_out(out)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
             | 
| 214 | 
            +
            class BasicTransformerBlock(nn.Module):
         | 
| 215 | 
            +
                ATTENTION_MODES = {
         | 
| 216 | 
            +
                    "softmax": CrossAttention, # vanilla attention
         | 
| 217 | 
            +
                    "softmax-xformers": MemoryEfficientCrossAttention
         | 
| 218 | 
            +
                }
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False):
         | 
| 221 | 
            +
                    super().__init__()
         | 
| 222 | 
            +
                    attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
         | 
| 223 | 
            +
                    assert attn_mode in self.ATTENTION_MODES
         | 
| 224 | 
            +
                    attn_cls = self.ATTENTION_MODES[attn_mode]
         | 
| 225 | 
            +
                    self.disable_self_attn = disable_self_attn
         | 
| 226 | 
            +
                    self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
         | 
| 227 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 228 | 
            +
                    self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
         | 
| 229 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 230 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 231 | 
            +
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 232 | 
            +
                    self.checkpoint = checkpoint
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def forward(self, x, context=None):
         | 
| 235 | 
            +
                    return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                def _forward(self, x, context=None):
         | 
| 238 | 
            +
                    x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
         | 
| 239 | 
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 240 | 
            +
                    x = self.ff(self.norm3(x)) + x
         | 
| 241 | 
            +
                    return x
         | 
| 242 | 
            +
             | 
| 243 | 
            +
             | 
| 244 | 
            +
            class SpatialTransformer(nn.Module):
         | 
| 245 | 
            +
                """
         | 
| 246 | 
            +
                Transformer block for image-like data.
         | 
| 247 | 
            +
                First, project the input (aka embedding)
         | 
| 248 | 
            +
                and reshape to b, t, d.
         | 
| 249 | 
            +
                Then apply standard transformer action.
         | 
| 250 | 
            +
                Finally, reshape to image
         | 
| 251 | 
            +
                NEW: use_linear for more efficiency instead of the 1x1 convs
         | 
| 252 | 
            +
                """
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True):
         | 
| 255 | 
            +
                    super().__init__()
         | 
| 256 | 
            +
                    assert context_dim is not None
         | 
| 257 | 
            +
                    if not isinstance(context_dim, list):
         | 
| 258 | 
            +
                        context_dim = [context_dim]
         | 
| 259 | 
            +
                    self.in_channels = in_channels
         | 
| 260 | 
            +
                    inner_dim = n_heads * d_head
         | 
| 261 | 
            +
                    self.norm = Normalize(in_channels)
         | 
| 262 | 
            +
                    if not use_linear:
         | 
| 263 | 
            +
                        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         | 
| 264 | 
            +
                    else:
         | 
| 265 | 
            +
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)])
         | 
| 268 | 
            +
                    if not use_linear:
         | 
| 269 | 
            +
                        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
         | 
| 270 | 
            +
                    else:
         | 
| 271 | 
            +
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 272 | 
            +
                    self.use_linear = use_linear
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                def forward(self, x, context=None):
         | 
| 275 | 
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 276 | 
            +
                    if not isinstance(context, list):
         | 
| 277 | 
            +
                        context = [context]
         | 
| 278 | 
            +
                    b, c, h, w = x.shape
         | 
| 279 | 
            +
                    x_in = x
         | 
| 280 | 
            +
                    x = self.norm(x)
         | 
| 281 | 
            +
                    if not self.use_linear:
         | 
| 282 | 
            +
                        x = self.proj_in(x)
         | 
| 283 | 
            +
                    x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
         | 
| 284 | 
            +
                    if self.use_linear:
         | 
| 285 | 
            +
                        x = self.proj_in(x)
         | 
| 286 | 
            +
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 287 | 
            +
                        x = block(x, context=context[i])
         | 
| 288 | 
            +
                    if self.use_linear:
         | 
| 289 | 
            +
                        x = self.proj_out(x)
         | 
| 290 | 
            +
                    x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
         | 
| 291 | 
            +
                    if not self.use_linear:
         | 
| 292 | 
            +
                        x = self.proj_out(x)
         | 
| 293 | 
            +
                    return x + x_in
         | 
| 294 | 
            +
             | 
| 295 | 
            +
             | 
| 296 | 
            +
            class BasicTransformerBlock3D(BasicTransformerBlock):
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 299 | 
            +
                    return checkpoint(self._forward, (x, context, num_frames), self.parameters(), self.checkpoint)
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                def _forward(self, x, context=None, num_frames=1):
         | 
| 302 | 
            +
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 303 | 
            +
                    x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
         | 
| 304 | 
            +
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 305 | 
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 306 | 
            +
                    x = self.ff(self.norm3(x)) + x
         | 
| 307 | 
            +
                    return x
         | 
| 308 | 
            +
             | 
| 309 | 
            +
             | 
| 310 | 
            +
            class SpatialTransformer3D(nn.Module):
         | 
| 311 | 
            +
                ''' 3D self-attention '''
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True):
         | 
| 314 | 
            +
                    super().__init__()
         | 
| 315 | 
            +
                    assert context_dim is not None
         | 
| 316 | 
            +
                    if not isinstance(context_dim, list):
         | 
| 317 | 
            +
                        context_dim = [context_dim]
         | 
| 318 | 
            +
                    self.in_channels = in_channels
         | 
| 319 | 
            +
                    inner_dim = n_heads * d_head
         | 
| 320 | 
            +
                    self.norm = Normalize(in_channels)
         | 
| 321 | 
            +
                    if not use_linear:
         | 
| 322 | 
            +
                        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         | 
| 323 | 
            +
                    else:
         | 
| 324 | 
            +
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    self.transformer_blocks = nn.ModuleList([BasicTransformerBlock3D(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)])
         | 
| 327 | 
            +
                    if not use_linear:
         | 
| 328 | 
            +
                        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
         | 
| 329 | 
            +
                    else:
         | 
| 330 | 
            +
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 331 | 
            +
                    self.use_linear = use_linear
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 334 | 
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 335 | 
            +
                    if not isinstance(context, list):
         | 
| 336 | 
            +
                        context = [context]
         | 
| 337 | 
            +
                    b, c, h, w = x.shape
         | 
| 338 | 
            +
                    x_in = x
         | 
| 339 | 
            +
                    x = self.norm(x)
         | 
| 340 | 
            +
                    if not self.use_linear:
         | 
| 341 | 
            +
                        x = self.proj_in(x)
         | 
| 342 | 
            +
                    x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
         | 
| 343 | 
            +
                    if self.use_linear:
         | 
| 344 | 
            +
                        x = self.proj_in(x)
         | 
| 345 | 
            +
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 346 | 
            +
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 347 | 
            +
                    if self.use_linear:
         | 
| 348 | 
            +
                        x = self.proj_out(x)
         | 
| 349 | 
            +
                    x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
         | 
| 350 | 
            +
                    if not self.use_linear:
         | 
| 351 | 
            +
                        x = self.proj_out(x)
         | 
| 352 | 
            +
                    return x + x_in
         | 
    	
        mvdream/models.py
    ADDED
    
    | @@ -0,0 +1,775 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # obtained and modified from https://github.com/bytedance/MVDream
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import math
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            import torch as th
         | 
| 6 | 
            +
            import torch.nn as nn
         | 
| 7 | 
            +
            import torch.nn.functional as F
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from abc import abstractmethod
         | 
| 10 | 
            +
            from .util import (
         | 
| 11 | 
            +
                checkpoint,
         | 
| 12 | 
            +
                conv_nd,
         | 
| 13 | 
            +
                linear,
         | 
| 14 | 
            +
                avg_pool_nd,
         | 
| 15 | 
            +
                zero_module,
         | 
| 16 | 
            +
                normalization,
         | 
| 17 | 
            +
                timestep_embedding,
         | 
| 18 | 
            +
            )
         | 
| 19 | 
            +
            from .attention import SpatialTransformer, SpatialTransformer3D
         | 
| 20 | 
            +
            from diffusers.configuration_utils import ConfigMixin
         | 
| 21 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 22 | 
            +
            from typing import Any, List, Optional
         | 
| 23 | 
            +
            from torch import Tensor
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class MultiViewUNetWrapperModel(ModelMixin, ConfigMixin):
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def __init__(self, 
         | 
| 29 | 
            +
                        image_size,
         | 
| 30 | 
            +
                        in_channels,
         | 
| 31 | 
            +
                        model_channels,
         | 
| 32 | 
            +
                        out_channels,
         | 
| 33 | 
            +
                        num_res_blocks,
         | 
| 34 | 
            +
                        attention_resolutions,
         | 
| 35 | 
            +
                        dropout=0,
         | 
| 36 | 
            +
                        channel_mult=(1, 2, 4, 8),
         | 
| 37 | 
            +
                        conv_resample=True,
         | 
| 38 | 
            +
                        dims=2,
         | 
| 39 | 
            +
                        num_classes=None,
         | 
| 40 | 
            +
                        use_checkpoint=False,
         | 
| 41 | 
            +
                        num_heads=-1,
         | 
| 42 | 
            +
                        num_head_channels=-1,
         | 
| 43 | 
            +
                        num_heads_upsample=-1,
         | 
| 44 | 
            +
                        use_scale_shift_norm=False,
         | 
| 45 | 
            +
                        resblock_updown=False,
         | 
| 46 | 
            +
                        use_new_attention_order=False,
         | 
| 47 | 
            +
                        use_spatial_transformer=False, # custom transformer support
         | 
| 48 | 
            +
                        transformer_depth=1, # custom transformer support
         | 
| 49 | 
            +
                        context_dim=None, # custom transformer support
         | 
| 50 | 
            +
                        n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
         | 
| 51 | 
            +
                        legacy=True,
         | 
| 52 | 
            +
                        disable_self_attentions=None,
         | 
| 53 | 
            +
                        num_attention_blocks=None,
         | 
| 54 | 
            +
                        disable_middle_self_attn=False,
         | 
| 55 | 
            +
                        use_linear_in_transformer=False,
         | 
| 56 | 
            +
                        adm_in_channels=None,
         | 
| 57 | 
            +
                        camera_dim=None,):
         | 
| 58 | 
            +
                    super().__init__()
         | 
| 59 | 
            +
                    self.unet: MultiViewUNetModel = MultiViewUNetModel(
         | 
| 60 | 
            +
                        image_size=image_size,
         | 
| 61 | 
            +
                        in_channels=in_channels,
         | 
| 62 | 
            +
                        model_channels=model_channels,
         | 
| 63 | 
            +
                        out_channels=out_channels,
         | 
| 64 | 
            +
                        num_res_blocks=num_res_blocks,
         | 
| 65 | 
            +
                        attention_resolutions=attention_resolutions,
         | 
| 66 | 
            +
                        dropout=dropout,
         | 
| 67 | 
            +
                        channel_mult=channel_mult,
         | 
| 68 | 
            +
                        conv_resample=conv_resample,
         | 
| 69 | 
            +
                        dims=dims,
         | 
| 70 | 
            +
                        num_classes=num_classes,
         | 
| 71 | 
            +
                        use_checkpoint=use_checkpoint,
         | 
| 72 | 
            +
                        num_heads=num_heads,
         | 
| 73 | 
            +
                        num_head_channels=num_head_channels,
         | 
| 74 | 
            +
                        num_heads_upsample=num_heads_upsample,
         | 
| 75 | 
            +
                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 76 | 
            +
                        resblock_updown=resblock_updown,
         | 
| 77 | 
            +
                        use_new_attention_order=use_new_attention_order,
         | 
| 78 | 
            +
                        use_spatial_transformer=use_spatial_transformer,
         | 
| 79 | 
            +
                        transformer_depth=transformer_depth,
         | 
| 80 | 
            +
                        context_dim=context_dim,
         | 
| 81 | 
            +
                        n_embed=n_embed,
         | 
| 82 | 
            +
                        legacy=legacy,
         | 
| 83 | 
            +
                        disable_self_attentions=disable_self_attentions,
         | 
| 84 | 
            +
                        num_attention_blocks=num_attention_blocks,
         | 
| 85 | 
            +
                        disable_middle_self_attn=disable_middle_self_attn,
         | 
| 86 | 
            +
                        use_linear_in_transformer=use_linear_in_transformer,
         | 
| 87 | 
            +
                        adm_in_channels=adm_in_channels,
         | 
| 88 | 
            +
                        camera_dim=camera_dim,
         | 
| 89 | 
            +
                    )
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def forward(self, *args, **kwargs):
         | 
| 92 | 
            +
                    return self.unet(*args, **kwargs)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
             | 
| 95 | 
            +
            class TimestepBlock(nn.Module):
         | 
| 96 | 
            +
                """
         | 
| 97 | 
            +
                Any module where forward() takes timestep embeddings as a second argument.
         | 
| 98 | 
            +
                """
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                @abstractmethod
         | 
| 101 | 
            +
                def forward(self, x, emb):
         | 
| 102 | 
            +
                    """
         | 
| 103 | 
            +
                    Apply the module to `x` given `emb` timestep embeddings.
         | 
| 104 | 
            +
                    """
         | 
| 105 | 
            +
             | 
| 106 | 
            +
             | 
| 107 | 
            +
            class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
         | 
| 108 | 
            +
                """
         | 
| 109 | 
            +
                A sequential module that passes timestep embeddings to the children that
         | 
| 110 | 
            +
                support it as an extra input.
         | 
| 111 | 
            +
                """
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def forward(self, x, emb, context=None, num_frames=1):
         | 
| 114 | 
            +
                    for layer in self:
         | 
| 115 | 
            +
                        if isinstance(layer, TimestepBlock):
         | 
| 116 | 
            +
                            x = layer(x, emb)
         | 
| 117 | 
            +
                        elif isinstance(layer, SpatialTransformer3D):
         | 
| 118 | 
            +
                            x = layer(x, context, num_frames=num_frames)
         | 
| 119 | 
            +
                        elif isinstance(layer, SpatialTransformer):
         | 
| 120 | 
            +
                            x = layer(x, context)
         | 
| 121 | 
            +
                        else:
         | 
| 122 | 
            +
                            x = layer(x)
         | 
| 123 | 
            +
                    return x
         | 
| 124 | 
            +
             | 
| 125 | 
            +
             | 
| 126 | 
            +
            class Upsample(nn.Module):
         | 
| 127 | 
            +
                """
         | 
| 128 | 
            +
                An upsampling layer with an optional convolution.
         | 
| 129 | 
            +
                :param channels: channels in the inputs and outputs.
         | 
| 130 | 
            +
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 131 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 132 | 
            +
                             upsampling occurs in the inner-two dimensions.
         | 
| 133 | 
            +
                """
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 136 | 
            +
                    super().__init__()
         | 
| 137 | 
            +
                    self.channels = channels
         | 
| 138 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 139 | 
            +
                    self.use_conv = use_conv
         | 
| 140 | 
            +
                    self.dims = dims
         | 
| 141 | 
            +
                    if use_conv:
         | 
| 142 | 
            +
                        self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                def forward(self, x):
         | 
| 145 | 
            +
                    assert x.shape[1] == self.channels
         | 
| 146 | 
            +
                    if self.dims == 3:
         | 
| 147 | 
            +
                        x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
         | 
| 148 | 
            +
                    else:
         | 
| 149 | 
            +
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         | 
| 150 | 
            +
                    if self.use_conv:
         | 
| 151 | 
            +
                        x = self.conv(x)
         | 
| 152 | 
            +
                    return x
         | 
| 153 | 
            +
             | 
| 154 | 
            +
             | 
| 155 | 
            +
            class Downsample(nn.Module):
         | 
| 156 | 
            +
                """
         | 
| 157 | 
            +
                A downsampling layer with an optional convolution.
         | 
| 158 | 
            +
                :param channels: channels in the inputs and outputs.
         | 
| 159 | 
            +
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 160 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 161 | 
            +
                             downsampling occurs in the inner-two dimensions.
         | 
| 162 | 
            +
                """
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 165 | 
            +
                    super().__init__()
         | 
| 166 | 
            +
                    self.channels = channels
         | 
| 167 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 168 | 
            +
                    self.use_conv = use_conv
         | 
| 169 | 
            +
                    self.dims = dims
         | 
| 170 | 
            +
                    stride = 2 if dims != 3 else (1, 2, 2)
         | 
| 171 | 
            +
                    if use_conv:
         | 
| 172 | 
            +
                        self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
         | 
| 173 | 
            +
                    else:
         | 
| 174 | 
            +
                        assert self.channels == self.out_channels
         | 
| 175 | 
            +
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def forward(self, x):
         | 
| 178 | 
            +
                    assert x.shape[1] == self.channels
         | 
| 179 | 
            +
                    return self.op(x)
         | 
| 180 | 
            +
             | 
| 181 | 
            +
             | 
| 182 | 
            +
            class ResBlock(TimestepBlock):
         | 
| 183 | 
            +
                """
         | 
| 184 | 
            +
                A residual block that can optionally change the number of channels.
         | 
| 185 | 
            +
                :param channels: the number of input channels.
         | 
| 186 | 
            +
                :param emb_channels: the number of timestep embedding channels.
         | 
| 187 | 
            +
                :param dropout: the rate of dropout.
         | 
| 188 | 
            +
                :param out_channels: if specified, the number of out channels.
         | 
| 189 | 
            +
                :param use_conv: if True and out_channels is specified, use a spatial
         | 
| 190 | 
            +
                    convolution instead of a smaller 1x1 convolution to change the
         | 
| 191 | 
            +
                    channels in the skip connection.
         | 
| 192 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 193 | 
            +
                :param use_checkpoint: if True, use gradient checkpointing on this module.
         | 
| 194 | 
            +
                :param up: if True, use this block for upsampling.
         | 
| 195 | 
            +
                :param down: if True, use this block for downsampling.
         | 
| 196 | 
            +
                """
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                def __init__(
         | 
| 199 | 
            +
                    self,
         | 
| 200 | 
            +
                    channels,
         | 
| 201 | 
            +
                    emb_channels,
         | 
| 202 | 
            +
                    dropout,
         | 
| 203 | 
            +
                    out_channels=None,
         | 
| 204 | 
            +
                    use_conv=False,
         | 
| 205 | 
            +
                    use_scale_shift_norm=False,
         | 
| 206 | 
            +
                    dims=2,
         | 
| 207 | 
            +
                    use_checkpoint=False,
         | 
| 208 | 
            +
                    up=False,
         | 
| 209 | 
            +
                    down=False,
         | 
| 210 | 
            +
                ):
         | 
| 211 | 
            +
                    super().__init__()
         | 
| 212 | 
            +
                    self.channels = channels
         | 
| 213 | 
            +
                    self.emb_channels = emb_channels
         | 
| 214 | 
            +
                    self.dropout = dropout
         | 
| 215 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 216 | 
            +
                    self.use_conv = use_conv
         | 
| 217 | 
            +
                    self.use_checkpoint = use_checkpoint
         | 
| 218 | 
            +
                    self.use_scale_shift_norm = use_scale_shift_norm
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    self.in_layers = nn.Sequential(
         | 
| 221 | 
            +
                        normalization(channels),
         | 
| 222 | 
            +
                        nn.SiLU(),
         | 
| 223 | 
            +
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         | 
| 224 | 
            +
                    )
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    self.updown = up or down
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    if up:
         | 
| 229 | 
            +
                        self.h_upd = Upsample(channels, False, dims)
         | 
| 230 | 
            +
                        self.x_upd = Upsample(channels, False, dims)
         | 
| 231 | 
            +
                    elif down:
         | 
| 232 | 
            +
                        self.h_upd = Downsample(channels, False, dims)
         | 
| 233 | 
            +
                        self.x_upd = Downsample(channels, False, dims)
         | 
| 234 | 
            +
                    else:
         | 
| 235 | 
            +
                        self.h_upd = self.x_upd = nn.Identity()
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    self.emb_layers = nn.Sequential(
         | 
| 238 | 
            +
                        nn.SiLU(),
         | 
| 239 | 
            +
                        linear(
         | 
| 240 | 
            +
                            emb_channels,
         | 
| 241 | 
            +
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         | 
| 242 | 
            +
                        ),
         | 
| 243 | 
            +
                    )
         | 
| 244 | 
            +
                    self.out_layers = nn.Sequential(
         | 
| 245 | 
            +
                        normalization(self.out_channels),
         | 
| 246 | 
            +
                        nn.SiLU(),
         | 
| 247 | 
            +
                        nn.Dropout(p=dropout),
         | 
| 248 | 
            +
                        zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
         | 
| 249 | 
            +
                    )
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    if self.out_channels == channels:
         | 
| 252 | 
            +
                        self.skip_connection = nn.Identity()
         | 
| 253 | 
            +
                    elif use_conv:
         | 
| 254 | 
            +
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
         | 
| 255 | 
            +
                    else:
         | 
| 256 | 
            +
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def forward(self, x, emb):
         | 
| 259 | 
            +
                    """
         | 
| 260 | 
            +
                    Apply the block to a Tensor, conditioned on a timestep embedding.
         | 
| 261 | 
            +
                    :param x: an [N x C x ...] Tensor of features.
         | 
| 262 | 
            +
                    :param emb: an [N x emb_channels] Tensor of timestep embeddings.
         | 
| 263 | 
            +
                    :return: an [N x C x ...] Tensor of outputs.
         | 
| 264 | 
            +
                    """
         | 
| 265 | 
            +
                    return checkpoint(self._forward, (x, emb), self.parameters(), self.use_checkpoint)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def _forward(self, x, emb):
         | 
| 268 | 
            +
                    if self.updown:
         | 
| 269 | 
            +
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         | 
| 270 | 
            +
                        h = in_rest(x)
         | 
| 271 | 
            +
                        h = self.h_upd(h)
         | 
| 272 | 
            +
                        x = self.x_upd(x)
         | 
| 273 | 
            +
                        h = in_conv(h)
         | 
| 274 | 
            +
                    else:
         | 
| 275 | 
            +
                        h = self.in_layers(x)
         | 
| 276 | 
            +
                    emb_out = self.emb_layers(emb).type(h.dtype)
         | 
| 277 | 
            +
                    while len(emb_out.shape) < len(h.shape):
         | 
| 278 | 
            +
                        emb_out = emb_out[..., None]
         | 
| 279 | 
            +
                    if self.use_scale_shift_norm:
         | 
| 280 | 
            +
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         | 
| 281 | 
            +
                        scale, shift = th.chunk(emb_out, 2, dim=1)
         | 
| 282 | 
            +
                        h = out_norm(h) * (1 + scale) + shift
         | 
| 283 | 
            +
                        h = out_rest(h)
         | 
| 284 | 
            +
                    else:
         | 
| 285 | 
            +
                        h = h + emb_out
         | 
| 286 | 
            +
                        h = self.out_layers(h)
         | 
| 287 | 
            +
                    return self.skip_connection(x) + h
         | 
| 288 | 
            +
             | 
| 289 | 
            +
             | 
| 290 | 
            +
            class AttentionBlock(nn.Module):
         | 
| 291 | 
            +
                """
         | 
| 292 | 
            +
                An attention block that allows spatial positions to attend to each other.
         | 
| 293 | 
            +
                Originally ported from here, but adapted to the N-d case.
         | 
| 294 | 
            +
                https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
         | 
| 295 | 
            +
                """
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                def __init__(
         | 
| 298 | 
            +
                    self,
         | 
| 299 | 
            +
                    channels,
         | 
| 300 | 
            +
                    num_heads=1,
         | 
| 301 | 
            +
                    num_head_channels=-1,
         | 
| 302 | 
            +
                    use_checkpoint=False,
         | 
| 303 | 
            +
                    use_new_attention_order=False,
         | 
| 304 | 
            +
                ):
         | 
| 305 | 
            +
                    super().__init__()
         | 
| 306 | 
            +
                    self.channels = channels
         | 
| 307 | 
            +
                    if num_head_channels == -1:
         | 
| 308 | 
            +
                        self.num_heads = num_heads
         | 
| 309 | 
            +
                    else:
         | 
| 310 | 
            +
                        assert (channels % num_head_channels == 0), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
         | 
| 311 | 
            +
                        self.num_heads = channels // num_head_channels
         | 
| 312 | 
            +
                    self.use_checkpoint = use_checkpoint
         | 
| 313 | 
            +
                    self.norm = normalization(channels)
         | 
| 314 | 
            +
                    self.qkv = conv_nd(1, channels, channels * 3, 1)
         | 
| 315 | 
            +
                    if use_new_attention_order:
         | 
| 316 | 
            +
                        # split qkv before split heads
         | 
| 317 | 
            +
                        self.attention = QKVAttention(self.num_heads)
         | 
| 318 | 
            +
                    else:
         | 
| 319 | 
            +
                        # split heads before split qkv
         | 
| 320 | 
            +
                        self.attention = QKVAttentionLegacy(self.num_heads)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                def forward(self, x):
         | 
| 325 | 
            +
                    return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
         | 
| 326 | 
            +
                    #return pt_checkpoint(self._forward, x)  # pytorch
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                def _forward(self, x):
         | 
| 329 | 
            +
                    b, c, *spatial = x.shape
         | 
| 330 | 
            +
                    x = x.reshape(b, c, -1)
         | 
| 331 | 
            +
                    qkv = self.qkv(self.norm(x))
         | 
| 332 | 
            +
                    h = self.attention(qkv)
         | 
| 333 | 
            +
                    h = self.proj_out(h)
         | 
| 334 | 
            +
                    return (x + h).reshape(b, c, *spatial)
         | 
| 335 | 
            +
             | 
| 336 | 
            +
             | 
| 337 | 
            +
            def count_flops_attn(model, _x, y):
         | 
| 338 | 
            +
                """
         | 
| 339 | 
            +
                A counter for the `thop` package to count the operations in an
         | 
| 340 | 
            +
                attention operation.
         | 
| 341 | 
            +
                Meant to be used like:
         | 
| 342 | 
            +
                    macs, params = thop.profile(
         | 
| 343 | 
            +
                        model,
         | 
| 344 | 
            +
                        inputs=(inputs, timestamps),
         | 
| 345 | 
            +
                        custom_ops={QKVAttention: QKVAttention.count_flops},
         | 
| 346 | 
            +
                    )
         | 
| 347 | 
            +
                """
         | 
| 348 | 
            +
                b, c, *spatial = y[0].shape
         | 
| 349 | 
            +
                num_spatial = int(np.prod(spatial))
         | 
| 350 | 
            +
                # We perform two matmuls with the same number of ops.
         | 
| 351 | 
            +
                # The first computes the weight matrix, the second computes
         | 
| 352 | 
            +
                # the combination of the value vectors.
         | 
| 353 | 
            +
                matmul_ops = 2 * b * (num_spatial**2) * c
         | 
| 354 | 
            +
                model.total_ops += th.DoubleTensor([matmul_ops])
         | 
| 355 | 
            +
             | 
| 356 | 
            +
             | 
| 357 | 
            +
            class QKVAttentionLegacy(nn.Module):
         | 
| 358 | 
            +
                """
         | 
| 359 | 
            +
                A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
         | 
| 360 | 
            +
                """
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                def __init__(self, n_heads):
         | 
| 363 | 
            +
                    super().__init__()
         | 
| 364 | 
            +
                    self.n_heads = n_heads
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                def forward(self, qkv):
         | 
| 367 | 
            +
                    """
         | 
| 368 | 
            +
                    Apply QKV attention.
         | 
| 369 | 
            +
                    :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
         | 
| 370 | 
            +
                    :return: an [N x (H * C) x T] tensor after attention.
         | 
| 371 | 
            +
                    """
         | 
| 372 | 
            +
                    bs, width, length = qkv.shape
         | 
| 373 | 
            +
                    assert width % (3 * self.n_heads) == 0
         | 
| 374 | 
            +
                    ch = width // (3 * self.n_heads)
         | 
| 375 | 
            +
                    q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
         | 
| 376 | 
            +
                    scale = 1 / math.sqrt(math.sqrt(ch))
         | 
| 377 | 
            +
                    weight = th.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
         | 
| 378 | 
            +
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 379 | 
            +
                    a = th.einsum("bts,bcs->bct", weight, v)
         | 
| 380 | 
            +
                    return a.reshape(bs, -1, length)
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                @staticmethod
         | 
| 383 | 
            +
                def count_flops(model, _x, y):
         | 
| 384 | 
            +
                    return count_flops_attn(model, _x, y)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
             | 
| 387 | 
            +
            class QKVAttention(nn.Module):
         | 
| 388 | 
            +
                """
         | 
| 389 | 
            +
                A module which performs QKV attention and splits in a different order.
         | 
| 390 | 
            +
                """
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                def __init__(self, n_heads):
         | 
| 393 | 
            +
                    super().__init__()
         | 
| 394 | 
            +
                    self.n_heads = n_heads
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                def forward(self, qkv):
         | 
| 397 | 
            +
                    """
         | 
| 398 | 
            +
                    Apply QKV attention.
         | 
| 399 | 
            +
                    :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
         | 
| 400 | 
            +
                    :return: an [N x (H * C) x T] tensor after attention.
         | 
| 401 | 
            +
                    """
         | 
| 402 | 
            +
                    bs, width, length = qkv.shape
         | 
| 403 | 
            +
                    assert width % (3 * self.n_heads) == 0
         | 
| 404 | 
            +
                    ch = width // (3 * self.n_heads)
         | 
| 405 | 
            +
                    q, k, v = qkv.chunk(3, dim=1)
         | 
| 406 | 
            +
                    scale = 1 / math.sqrt(math.sqrt(ch))
         | 
| 407 | 
            +
                    weight = th.einsum(
         | 
| 408 | 
            +
                        "bct,bcs->bts",
         | 
| 409 | 
            +
                        (q * scale).view(bs * self.n_heads, ch, length),
         | 
| 410 | 
            +
                        (k * scale).view(bs * self.n_heads, ch, length),
         | 
| 411 | 
            +
                    ) # More stable with f16 than dividing afterwards
         | 
| 412 | 
            +
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 413 | 
            +
                    a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
         | 
| 414 | 
            +
                    return a.reshape(bs, -1, length)
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                @staticmethod
         | 
| 417 | 
            +
                def count_flops(model, _x, y):
         | 
| 418 | 
            +
                    return count_flops_attn(model, _x, y)
         | 
| 419 | 
            +
             | 
| 420 | 
            +
             | 
| 421 | 
            +
            class Timestep(nn.Module):
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                def __init__(self, dim):
         | 
| 424 | 
            +
                    super().__init__()
         | 
| 425 | 
            +
                    self.dim = dim
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                def forward(self, t):
         | 
| 428 | 
            +
                    return timestep_embedding(t, self.dim)
         | 
| 429 | 
            +
             | 
| 430 | 
            +
             | 
| 431 | 
            +
            class MultiViewUNetModel(nn.Module):
         | 
| 432 | 
            +
                """
         | 
| 433 | 
            +
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
| 434 | 
            +
                :param in_channels: channels in the input Tensor.
         | 
| 435 | 
            +
                :param model_channels: base channel count for the model.
         | 
| 436 | 
            +
                :param out_channels: channels in the output Tensor.
         | 
| 437 | 
            +
                :param num_res_blocks: number of residual blocks per downsample.
         | 
| 438 | 
            +
                :param attention_resolutions: a collection of downsample rates at which
         | 
| 439 | 
            +
                    attention will take place. May be a set, list, or tuple.
         | 
| 440 | 
            +
                    For example, if this contains 4, then at 4x downsampling, attention
         | 
| 441 | 
            +
                    will be used.
         | 
| 442 | 
            +
                :param dropout: the dropout probability.
         | 
| 443 | 
            +
                :param channel_mult: channel multiplier for each level of the UNet.
         | 
| 444 | 
            +
                :param conv_resample: if True, use learned convolutions for upsampling and
         | 
| 445 | 
            +
                    downsampling.
         | 
| 446 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 447 | 
            +
                :param num_classes: if specified (as an int), then this model will be
         | 
| 448 | 
            +
                    class-conditional with `num_classes` classes.
         | 
| 449 | 
            +
                :param use_checkpoint: use gradient checkpointing to reduce memory usage.
         | 
| 450 | 
            +
                :param num_heads: the number of attention heads in each attention layer.
         | 
| 451 | 
            +
                :param num_heads_channels: if specified, ignore num_heads and instead use
         | 
| 452 | 
            +
                                           a fixed channel width per attention head.
         | 
| 453 | 
            +
                :param num_heads_upsample: works with num_heads to set a different number
         | 
| 454 | 
            +
                                           of heads for upsampling. Deprecated.
         | 
| 455 | 
            +
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         | 
| 456 | 
            +
                :param resblock_updown: use residual blocks for up/downsampling.
         | 
| 457 | 
            +
                :param use_new_attention_order: use a different attention pattern for potentially
         | 
| 458 | 
            +
                                                increased efficiency.
         | 
| 459 | 
            +
                :param camera_dim: dimensionality of camera input.
         | 
| 460 | 
            +
                """
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                def __init__(
         | 
| 463 | 
            +
                        self,
         | 
| 464 | 
            +
                        image_size,
         | 
| 465 | 
            +
                        in_channels,
         | 
| 466 | 
            +
                        model_channels,
         | 
| 467 | 
            +
                        out_channels,
         | 
| 468 | 
            +
                        num_res_blocks,
         | 
| 469 | 
            +
                        attention_resolutions,
         | 
| 470 | 
            +
                        dropout=0,
         | 
| 471 | 
            +
                        channel_mult=(1, 2, 4, 8),
         | 
| 472 | 
            +
                        conv_resample=True,
         | 
| 473 | 
            +
                        dims=2,
         | 
| 474 | 
            +
                        num_classes=None,
         | 
| 475 | 
            +
                        use_checkpoint=False,
         | 
| 476 | 
            +
                        num_heads=-1,
         | 
| 477 | 
            +
                        num_head_channels=-1,
         | 
| 478 | 
            +
                        num_heads_upsample=-1,
         | 
| 479 | 
            +
                        use_scale_shift_norm=False,
         | 
| 480 | 
            +
                        resblock_updown=False,
         | 
| 481 | 
            +
                        use_new_attention_order=False,
         | 
| 482 | 
            +
                        use_spatial_transformer=False, # custom transformer support
         | 
| 483 | 
            +
                        transformer_depth=1, # custom transformer support
         | 
| 484 | 
            +
                        context_dim=None, # custom transformer support
         | 
| 485 | 
            +
                        n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
         | 
| 486 | 
            +
                        legacy=True,
         | 
| 487 | 
            +
                        disable_self_attentions=None,
         | 
| 488 | 
            +
                        num_attention_blocks=None,
         | 
| 489 | 
            +
                        disable_middle_self_attn=False,
         | 
| 490 | 
            +
                        use_linear_in_transformer=False,
         | 
| 491 | 
            +
                        adm_in_channels=None,
         | 
| 492 | 
            +
                        camera_dim=None,
         | 
| 493 | 
            +
                ):
         | 
| 494 | 
            +
                    super().__init__()
         | 
| 495 | 
            +
                    if use_spatial_transformer:
         | 
| 496 | 
            +
                        assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                    if context_dim is not None:
         | 
| 499 | 
            +
                        assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
         | 
| 500 | 
            +
                        from omegaconf.listconfig import ListConfig
         | 
| 501 | 
            +
                        if type(context_dim) == ListConfig:
         | 
| 502 | 
            +
                            context_dim = list(context_dim)
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                    if num_heads_upsample == -1:
         | 
| 505 | 
            +
                        num_heads_upsample = num_heads
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                    if num_heads == -1:
         | 
| 508 | 
            +
                        assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                    if num_head_channels == -1:
         | 
| 511 | 
            +
                        assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    self.image_size = image_size
         | 
| 514 | 
            +
                    self.in_channels = in_channels
         | 
| 515 | 
            +
                    self.model_channels = model_channels
         | 
| 516 | 
            +
                    self.out_channels = out_channels
         | 
| 517 | 
            +
                    if isinstance(num_res_blocks, int):
         | 
| 518 | 
            +
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         | 
| 519 | 
            +
                    else:
         | 
| 520 | 
            +
                        if len(num_res_blocks) != len(channel_mult):
         | 
| 521 | 
            +
                            raise ValueError("provide num_res_blocks either as an int (globally constant) or "
         | 
| 522 | 
            +
                                             "as a list/tuple (per-level) with the same length as channel_mult")
         | 
| 523 | 
            +
                        self.num_res_blocks = num_res_blocks
         | 
| 524 | 
            +
                    if disable_self_attentions is not None:
         | 
| 525 | 
            +
                        # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
         | 
| 526 | 
            +
                        assert len(disable_self_attentions) == len(channel_mult)
         | 
| 527 | 
            +
                    if num_attention_blocks is not None:
         | 
| 528 | 
            +
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         | 
| 529 | 
            +
                        assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
         | 
| 530 | 
            +
                        print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
         | 
| 531 | 
            +
                              f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
         | 
| 532 | 
            +
                              f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
         | 
| 533 | 
            +
                              f"attention will still not be set.")
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                    self.attention_resolutions = attention_resolutions
         | 
| 536 | 
            +
                    self.dropout = dropout
         | 
| 537 | 
            +
                    self.channel_mult = channel_mult
         | 
| 538 | 
            +
                    self.conv_resample = conv_resample
         | 
| 539 | 
            +
                    self.num_classes = num_classes
         | 
| 540 | 
            +
                    self.use_checkpoint = use_checkpoint
         | 
| 541 | 
            +
                    self.num_heads = num_heads
         | 
| 542 | 
            +
                    self.num_head_channels = num_head_channels
         | 
| 543 | 
            +
                    self.num_heads_upsample = num_heads_upsample
         | 
| 544 | 
            +
                    self.predict_codebook_ids = n_embed is not None
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    time_embed_dim = model_channels * 4
         | 
| 547 | 
            +
                    self.time_embed = nn.Sequential(
         | 
| 548 | 
            +
                        linear(model_channels, time_embed_dim),
         | 
| 549 | 
            +
                        nn.SiLU(),
         | 
| 550 | 
            +
                        linear(time_embed_dim, time_embed_dim),
         | 
| 551 | 
            +
                    )
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    if camera_dim is not None:
         | 
| 554 | 
            +
                        time_embed_dim = model_channels * 4
         | 
| 555 | 
            +
                        self.camera_embed = nn.Sequential(
         | 
| 556 | 
            +
                            linear(camera_dim, time_embed_dim),
         | 
| 557 | 
            +
                            nn.SiLU(),
         | 
| 558 | 
            +
                            linear(time_embed_dim, time_embed_dim),
         | 
| 559 | 
            +
                        )
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    if self.num_classes is not None:
         | 
| 562 | 
            +
                        if isinstance(self.num_classes, int):
         | 
| 563 | 
            +
                            self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
         | 
| 564 | 
            +
                        elif self.num_classes == "continuous":
         | 
| 565 | 
            +
                            # print("setting up linear c_adm embedding layer")
         | 
| 566 | 
            +
                            self.label_emb = nn.Linear(1, time_embed_dim)
         | 
| 567 | 
            +
                        elif self.num_classes == "sequential":
         | 
| 568 | 
            +
                            assert adm_in_channels is not None
         | 
| 569 | 
            +
                            self.label_emb = nn.Sequential(nn.Sequential(
         | 
| 570 | 
            +
                                linear(adm_in_channels, time_embed_dim),
         | 
| 571 | 
            +
                                nn.SiLU(),
         | 
| 572 | 
            +
                                linear(time_embed_dim, time_embed_dim),
         | 
| 573 | 
            +
                            ))
         | 
| 574 | 
            +
                        else:
         | 
| 575 | 
            +
                            raise ValueError()
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))])
         | 
| 578 | 
            +
                    self._feature_size = model_channels
         | 
| 579 | 
            +
                    input_block_chans = [model_channels]
         | 
| 580 | 
            +
                    ch = model_channels
         | 
| 581 | 
            +
                    ds = 1
         | 
| 582 | 
            +
                    for level, mult in enumerate(channel_mult):
         | 
| 583 | 
            +
                        for nr in range(self.num_res_blocks[level]):
         | 
| 584 | 
            +
                            layers: List[Any] = [ResBlock(
         | 
| 585 | 
            +
                                ch,
         | 
| 586 | 
            +
                                time_embed_dim,
         | 
| 587 | 
            +
                                dropout,
         | 
| 588 | 
            +
                                out_channels=mult * model_channels,
         | 
| 589 | 
            +
                                dims=dims,
         | 
| 590 | 
            +
                                use_checkpoint=use_checkpoint,
         | 
| 591 | 
            +
                                use_scale_shift_norm=use_scale_shift_norm,
         | 
| 592 | 
            +
                            )]
         | 
| 593 | 
            +
                            ch = mult * model_channels
         | 
| 594 | 
            +
                            if ds in attention_resolutions:
         | 
| 595 | 
            +
                                if num_head_channels == -1:
         | 
| 596 | 
            +
                                    dim_head = ch // num_heads
         | 
| 597 | 
            +
                                else:
         | 
| 598 | 
            +
                                    num_heads = ch // num_head_channels
         | 
| 599 | 
            +
                                    dim_head = num_head_channels
         | 
| 600 | 
            +
                                if legacy:
         | 
| 601 | 
            +
                                    #num_heads = 1
         | 
| 602 | 
            +
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         | 
| 603 | 
            +
                                if disable_self_attentions is not None:
         | 
| 604 | 
            +
                                    disabled_sa = disable_self_attentions[level]
         | 
| 605 | 
            +
                                else:
         | 
| 606 | 
            +
                                    disabled_sa = False
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                                if num_attention_blocks is None or nr < num_attention_blocks[level]:
         | 
| 609 | 
            +
                                    layers.append(AttentionBlock(
         | 
| 610 | 
            +
                                        ch,
         | 
| 611 | 
            +
                                        use_checkpoint=use_checkpoint,
         | 
| 612 | 
            +
                                        num_heads=num_heads,
         | 
| 613 | 
            +
                                        num_head_channels=dim_head,
         | 
| 614 | 
            +
                                        use_new_attention_order=use_new_attention_order,
         | 
| 615 | 
            +
                                    ) if not use_spatial_transformer else SpatialTransformer3D(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint))
         | 
| 616 | 
            +
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         | 
| 617 | 
            +
                            self._feature_size += ch
         | 
| 618 | 
            +
                            input_block_chans.append(ch)
         | 
| 619 | 
            +
                        if level != len(channel_mult) - 1:
         | 
| 620 | 
            +
                            out_ch = ch
         | 
| 621 | 
            +
                            self.input_blocks.append(TimestepEmbedSequential(ResBlock(
         | 
| 622 | 
            +
                                ch,
         | 
| 623 | 
            +
                                time_embed_dim,
         | 
| 624 | 
            +
                                dropout,
         | 
| 625 | 
            +
                                out_channels=out_ch,
         | 
| 626 | 
            +
                                dims=dims,
         | 
| 627 | 
            +
                                use_checkpoint=use_checkpoint,
         | 
| 628 | 
            +
                                use_scale_shift_norm=use_scale_shift_norm,
         | 
| 629 | 
            +
                                down=True,
         | 
| 630 | 
            +
                            ) if resblock_updown else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)))
         | 
| 631 | 
            +
                            ch = out_ch
         | 
| 632 | 
            +
                            input_block_chans.append(ch)
         | 
| 633 | 
            +
                            ds *= 2
         | 
| 634 | 
            +
                            self._feature_size += ch
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                    if num_head_channels == -1:
         | 
| 637 | 
            +
                        dim_head = ch // num_heads
         | 
| 638 | 
            +
                    else:
         | 
| 639 | 
            +
                        num_heads = ch // num_head_channels
         | 
| 640 | 
            +
                        dim_head = num_head_channels
         | 
| 641 | 
            +
                    if legacy:
         | 
| 642 | 
            +
                        #num_heads = 1
         | 
| 643 | 
            +
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         | 
| 644 | 
            +
                    self.middle_block = TimestepEmbedSequential(
         | 
| 645 | 
            +
                        ResBlock(
         | 
| 646 | 
            +
                            ch,
         | 
| 647 | 
            +
                            time_embed_dim,
         | 
| 648 | 
            +
                            dropout,
         | 
| 649 | 
            +
                            dims=dims,
         | 
| 650 | 
            +
                            use_checkpoint=use_checkpoint,
         | 
| 651 | 
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 652 | 
            +
                        ),
         | 
| 653 | 
            +
                        AttentionBlock(
         | 
| 654 | 
            +
                            ch,
         | 
| 655 | 
            +
                            use_checkpoint=use_checkpoint,
         | 
| 656 | 
            +
                            num_heads=num_heads,
         | 
| 657 | 
            +
                            num_head_channels=dim_head,
         | 
| 658 | 
            +
                            use_new_attention_order=use_new_attention_order,
         | 
| 659 | 
            +
                        ) if not use_spatial_transformer else SpatialTransformer3D( # always uses a self-attn
         | 
| 660 | 
            +
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint),
         | 
| 661 | 
            +
                        ResBlock(
         | 
| 662 | 
            +
                            ch,
         | 
| 663 | 
            +
                            time_embed_dim,
         | 
| 664 | 
            +
                            dropout,
         | 
| 665 | 
            +
                            dims=dims,
         | 
| 666 | 
            +
                            use_checkpoint=use_checkpoint,
         | 
| 667 | 
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 668 | 
            +
                        ),
         | 
| 669 | 
            +
                    )
         | 
| 670 | 
            +
                    self._feature_size += ch
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                    self.output_blocks = nn.ModuleList([])
         | 
| 673 | 
            +
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         | 
| 674 | 
            +
                        for i in range(self.num_res_blocks[level] + 1):
         | 
| 675 | 
            +
                            ich = input_block_chans.pop()
         | 
| 676 | 
            +
                            layers = [ResBlock(
         | 
| 677 | 
            +
                                ch + ich,
         | 
| 678 | 
            +
                                time_embed_dim,
         | 
| 679 | 
            +
                                dropout,
         | 
| 680 | 
            +
                                out_channels=model_channels * mult,
         | 
| 681 | 
            +
                                dims=dims,
         | 
| 682 | 
            +
                                use_checkpoint=use_checkpoint,
         | 
| 683 | 
            +
                                use_scale_shift_norm=use_scale_shift_norm,
         | 
| 684 | 
            +
                            )]
         | 
| 685 | 
            +
                            ch = model_channels * mult
         | 
| 686 | 
            +
                            if ds in attention_resolutions:
         | 
| 687 | 
            +
                                if num_head_channels == -1:
         | 
| 688 | 
            +
                                    dim_head = ch // num_heads
         | 
| 689 | 
            +
                                else:
         | 
| 690 | 
            +
                                    num_heads = ch // num_head_channels
         | 
| 691 | 
            +
                                    dim_head = num_head_channels
         | 
| 692 | 
            +
                                if legacy:
         | 
| 693 | 
            +
                                    #num_heads = 1
         | 
| 694 | 
            +
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         | 
| 695 | 
            +
                                if disable_self_attentions is not None:
         | 
| 696 | 
            +
                                    disabled_sa = disable_self_attentions[level]
         | 
| 697 | 
            +
                                else:
         | 
| 698 | 
            +
                                    disabled_sa = False
         | 
| 699 | 
            +
             | 
| 700 | 
            +
                                if num_attention_blocks is None or i < num_attention_blocks[level]:
         | 
| 701 | 
            +
                                    layers.append(AttentionBlock(
         | 
| 702 | 
            +
                                        ch,
         | 
| 703 | 
            +
                                        use_checkpoint=use_checkpoint,
         | 
| 704 | 
            +
                                        num_heads=num_heads_upsample,
         | 
| 705 | 
            +
                                        num_head_channels=dim_head,
         | 
| 706 | 
            +
                                        use_new_attention_order=use_new_attention_order,
         | 
| 707 | 
            +
                                    ) if not use_spatial_transformer else SpatialTransformer3D(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint))
         | 
| 708 | 
            +
                            if level and i == self.num_res_blocks[level]:
         | 
| 709 | 
            +
                                out_ch = ch
         | 
| 710 | 
            +
                                layers.append(ResBlock(
         | 
| 711 | 
            +
                                    ch,
         | 
| 712 | 
            +
                                    time_embed_dim,
         | 
| 713 | 
            +
                                    dropout,
         | 
| 714 | 
            +
                                    out_channels=out_ch,
         | 
| 715 | 
            +
                                    dims=dims,
         | 
| 716 | 
            +
                                    use_checkpoint=use_checkpoint,
         | 
| 717 | 
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 718 | 
            +
                                    up=True,
         | 
| 719 | 
            +
                                ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch))
         | 
| 720 | 
            +
                                ds //= 2
         | 
| 721 | 
            +
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         | 
| 722 | 
            +
                            self._feature_size += ch
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                    self.out = nn.Sequential(
         | 
| 725 | 
            +
                        normalization(ch),
         | 
| 726 | 
            +
                        nn.SiLU(),
         | 
| 727 | 
            +
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         | 
| 728 | 
            +
                    )
         | 
| 729 | 
            +
                    if self.predict_codebook_ids:
         | 
| 730 | 
            +
                        self.id_predictor = nn.Sequential(
         | 
| 731 | 
            +
                            normalization(ch),
         | 
| 732 | 
            +
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 733 | 
            +
                            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 734 | 
            +
                        )
         | 
| 735 | 
            +
             | 
| 736 | 
            +
                def forward(self, x, timesteps=None, context=None, y: Optional[Tensor] = None, camera=None, num_frames=1, **kwargs):
         | 
| 737 | 
            +
                    """
         | 
| 738 | 
            +
                    Apply the model to an input batch.
         | 
| 739 | 
            +
                    :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
         | 
| 740 | 
            +
                    :param timesteps: a 1-D batch of timesteps.
         | 
| 741 | 
            +
                    :param context: conditioning plugged in via crossattn
         | 
| 742 | 
            +
                    :param y: an [N] Tensor of labels, if class-conditional.
         | 
| 743 | 
            +
                    :param num_frames: a integer indicating number of frames for tensor reshaping.
         | 
| 744 | 
            +
                    :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
         | 
| 745 | 
            +
                    """
         | 
| 746 | 
            +
                    assert x.shape[0] % num_frames == 0, "[UNet] input batch size must be dividable by num_frames!"
         | 
| 747 | 
            +
                    assert (y is not None) == (self.num_classes is not None), "must specify y if and only if the model is class-conditional"
         | 
| 748 | 
            +
                    hs = []
         | 
| 749 | 
            +
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
         | 
| 750 | 
            +
                    
         | 
| 751 | 
            +
                    emb = self.time_embed(t_emb)
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    if self.num_classes is not None:
         | 
| 754 | 
            +
                        assert y is not None
         | 
| 755 | 
            +
                        assert y.shape[0] == x.shape[0]
         | 
| 756 | 
            +
                        emb = emb + self.label_emb(y)
         | 
| 757 | 
            +
             | 
| 758 | 
            +
                    # Add camera embeddings
         | 
| 759 | 
            +
                    if camera is not None:
         | 
| 760 | 
            +
                        assert camera.shape[0] == emb.shape[0]
         | 
| 761 | 
            +
                        emb = emb + self.camera_embed(camera)
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    h = x
         | 
| 764 | 
            +
                    for module in self.input_blocks:
         | 
| 765 | 
            +
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 766 | 
            +
                        hs.append(h)
         | 
| 767 | 
            +
                    h = self.middle_block(h, emb, context, num_frames=num_frames)
         | 
| 768 | 
            +
                    for module in self.output_blocks:
         | 
| 769 | 
            +
                        h = th.cat([h, hs.pop()], dim=1)
         | 
| 770 | 
            +
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 771 | 
            +
                    h = h.type(x.dtype)
         | 
| 772 | 
            +
                    if self.predict_codebook_ids:
         | 
| 773 | 
            +
                        return self.id_predictor(h)
         | 
| 774 | 
            +
                    else:
         | 
| 775 | 
            +
                        return self.out(h)
         | 
    	
        mvdream/pipeline_mvdream.py
    ADDED
    
    | @@ -0,0 +1,484 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            import inspect
         | 
| 4 | 
            +
            from typing import Callable, List, Optional, Union
         | 
| 5 | 
            +
            from transformers import CLIPTextModel, CLIPTokenizer
         | 
| 6 | 
            +
            from diffusers import AutoencoderKL, DiffusionPipeline
         | 
| 7 | 
            +
            from diffusers.utils import (
         | 
| 8 | 
            +
                deprecate,
         | 
| 9 | 
            +
                is_accelerate_available,
         | 
| 10 | 
            +
                is_accelerate_version,
         | 
| 11 | 
            +
                logging,
         | 
| 12 | 
            +
            )
         | 
| 13 | 
            +
            from diffusers.configuration_utils import FrozenDict
         | 
| 14 | 
            +
            from diffusers.schedulers import DDIMScheduler
         | 
| 15 | 
            +
            try:
         | 
| 16 | 
            +
                from diffusers import randn_tensor # old import # type: ignore
         | 
| 17 | 
            +
            except ImportError:
         | 
| 18 | 
            +
                from diffusers.utils.torch_utils import randn_tensor # new import # type: ignore
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from .models import MultiViewUNetWrapperModel
         | 
| 21 | 
            +
            from accelerate.utils import set_module_tensor_to_device
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.get_logger(__name__) # pylint: disable=invalid-name
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            def create_camera_to_world_matrix(elevation, azimuth):
         | 
| 26 | 
            +
                elevation = np.radians(elevation)
         | 
| 27 | 
            +
                azimuth = np.radians(azimuth)
         | 
| 28 | 
            +
                # Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
         | 
| 29 | 
            +
                x = np.cos(elevation) * np.sin(azimuth)
         | 
| 30 | 
            +
                y = np.sin(elevation)
         | 
| 31 | 
            +
                z = np.cos(elevation) * np.cos(azimuth)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                # Calculate camera position, target, and up vectors
         | 
| 34 | 
            +
                camera_pos = np.array([x, y, z])
         | 
| 35 | 
            +
                target = np.array([0, 0, 0])
         | 
| 36 | 
            +
                up = np.array([0, 1, 0])
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                # Construct view matrix
         | 
| 39 | 
            +
                forward = target - camera_pos
         | 
| 40 | 
            +
                forward /= np.linalg.norm(forward)
         | 
| 41 | 
            +
                right = np.cross(forward, up)
         | 
| 42 | 
            +
                right /= np.linalg.norm(right)
         | 
| 43 | 
            +
                new_up = np.cross(right, forward)
         | 
| 44 | 
            +
                new_up /= np.linalg.norm(new_up)
         | 
| 45 | 
            +
                cam2world = np.eye(4)
         | 
| 46 | 
            +
                cam2world[:3, :3] = np.array([right, new_up, -forward]).T
         | 
| 47 | 
            +
                cam2world[:3, 3] = camera_pos
         | 
| 48 | 
            +
                return cam2world
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            def convert_opengl_to_blender(camera_matrix):
         | 
| 52 | 
            +
                if isinstance(camera_matrix, np.ndarray):
         | 
| 53 | 
            +
                    # Construct transformation matrix to convert from OpenGL space to Blender space
         | 
| 54 | 
            +
                    flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
         | 
| 55 | 
            +
                    camera_matrix_blender = np.dot(flip_yz, camera_matrix)
         | 
| 56 | 
            +
                else:
         | 
| 57 | 
            +
                    # Construct transformation matrix to convert from OpenGL space to Blender space
         | 
| 58 | 
            +
                    flip_yz = torch.tensor([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
         | 
| 59 | 
            +
                    if camera_matrix.ndim == 3:
         | 
| 60 | 
            +
                        flip_yz = flip_yz.unsqueeze(0)
         | 
| 61 | 
            +
                    camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
         | 
| 62 | 
            +
                return camera_matrix_blender
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            def get_camera(num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True):
         | 
| 66 | 
            +
                angle_gap = azimuth_span / num_frames
         | 
| 67 | 
            +
                cameras = []
         | 
| 68 | 
            +
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
| 69 | 
            +
                    camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
         | 
| 70 | 
            +
                    if blender_coord:
         | 
| 71 | 
            +
                        camera_matrix = convert_opengl_to_blender(camera_matrix)
         | 
| 72 | 
            +
                    cameras.append(camera_matrix.flatten())
         | 
| 73 | 
            +
                return torch.tensor(np.stack(cameras, 0)).float()
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            class MVDreamStableDiffusionPipeline(DiffusionPipeline):
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                def __init__(
         | 
| 79 | 
            +
                    self,
         | 
| 80 | 
            +
                    vae: AutoencoderKL,
         | 
| 81 | 
            +
                    unet: MultiViewUNetWrapperModel,
         | 
| 82 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 83 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 84 | 
            +
                    scheduler: DDIMScheduler,
         | 
| 85 | 
            +
                    requires_safety_checker: bool = False,
         | 
| 86 | 
            +
                ):
         | 
| 87 | 
            +
                    super().__init__()
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore
         | 
| 90 | 
            +
                        deprecation_message = (f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
         | 
| 91 | 
            +
                                               f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore
         | 
| 92 | 
            +
                                               "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
         | 
| 93 | 
            +
                                               " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
         | 
| 94 | 
            +
                                               " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
         | 
| 95 | 
            +
                                               " file")
         | 
| 96 | 
            +
                        deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 97 | 
            +
                        new_config = dict(scheduler.config)
         | 
| 98 | 
            +
                        new_config["steps_offset"] = 1
         | 
| 99 | 
            +
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore
         | 
| 102 | 
            +
                        deprecation_message = (f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
         | 
| 103 | 
            +
                                               " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
         | 
| 104 | 
            +
                                               " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
         | 
| 105 | 
            +
                                               " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
         | 
| 106 | 
            +
                                               " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file")
         | 
| 107 | 
            +
                        deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 108 | 
            +
                        new_config = dict(scheduler.config)
         | 
| 109 | 
            +
                        new_config["clip_sample"] = False
         | 
| 110 | 
            +
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    self.register_modules(
         | 
| 113 | 
            +
                        vae=vae,
         | 
| 114 | 
            +
                        unet=unet,
         | 
| 115 | 
            +
                        scheduler=scheduler,
         | 
| 116 | 
            +
                        tokenizer=tokenizer,
         | 
| 117 | 
            +
                        text_encoder=text_encoder,
         | 
| 118 | 
            +
                    )
         | 
| 119 | 
            +
                    self.vae_scale_factor = 2**(len(self.vae.config.block_out_channels) - 1)
         | 
| 120 | 
            +
                    self.register_to_config(requires_safety_checker=requires_safety_checker)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                def enable_vae_slicing(self):
         | 
| 123 | 
            +
                    r"""
         | 
| 124 | 
            +
                    Enable sliced VAE decoding.
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
         | 
| 127 | 
            +
                    steps. This is useful to save some memory and allow larger batch sizes.
         | 
| 128 | 
            +
                    """
         | 
| 129 | 
            +
                    self.vae.enable_slicing()
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def disable_vae_slicing(self):
         | 
| 132 | 
            +
                    r"""
         | 
| 133 | 
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
         | 
| 134 | 
            +
                    computing decoding in one step.
         | 
| 135 | 
            +
                    """
         | 
| 136 | 
            +
                    self.vae.disable_slicing()
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                def enable_vae_tiling(self):
         | 
| 139 | 
            +
                    r"""
         | 
| 140 | 
            +
                    Enable tiled VAE decoding.
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
         | 
| 143 | 
            +
                    several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
         | 
| 144 | 
            +
                    """
         | 
| 145 | 
            +
                    self.vae.enable_tiling()
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                def disable_vae_tiling(self):
         | 
| 148 | 
            +
                    r"""
         | 
| 149 | 
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
         | 
| 150 | 
            +
                    computing decoding in one step.
         | 
| 151 | 
            +
                    """
         | 
| 152 | 
            +
                    self.vae.disable_tiling()
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                def enable_sequential_cpu_offload(self, gpu_id=0):
         | 
| 155 | 
            +
                    r"""
         | 
| 156 | 
            +
                    Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
         | 
| 157 | 
            +
                    text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
         | 
| 158 | 
            +
                    `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
         | 
| 159 | 
            +
                    Note that offloading happens on a submodule basis. Memory savings are higher than with
         | 
| 160 | 
            +
                    `enable_model_cpu_offload`, but performance is lower.
         | 
| 161 | 
            +
                    """
         | 
| 162 | 
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
         | 
| 163 | 
            +
                        from accelerate import cpu_offload
         | 
| 164 | 
            +
                    else:
         | 
| 165 | 
            +
                        raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    if self.device.type != "cpu":
         | 
| 170 | 
            +
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 171 | 
            +
                        torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
         | 
| 174 | 
            +
                        cpu_offload(cpu_offloaded_model, device)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def enable_model_cpu_offload(self, gpu_id=0):
         | 
| 177 | 
            +
                    r"""
         | 
| 178 | 
            +
                    Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
         | 
| 179 | 
            +
                    to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
         | 
| 180 | 
            +
                    method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
         | 
| 181 | 
            +
                    `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
         | 
| 182 | 
            +
                    """
         | 
| 183 | 
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
         | 
| 184 | 
            +
                        from accelerate import cpu_offload_with_hook
         | 
| 185 | 
            +
                    else:
         | 
| 186 | 
            +
                        raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    if self.device.type != "cpu":
         | 
| 191 | 
            +
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 192 | 
            +
                        torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    hook = None
         | 
| 195 | 
            +
                    for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
         | 
| 196 | 
            +
                        _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    # We'll offload the last model manually.
         | 
| 199 | 
            +
                    self.final_offload_hook = hook
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                @property
         | 
| 202 | 
            +
                def _execution_device(self):
         | 
| 203 | 
            +
                    r"""
         | 
| 204 | 
            +
                    Returns the device on which the pipeline's models will be executed. After calling
         | 
| 205 | 
            +
                    `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
         | 
| 206 | 
            +
                    hooks.
         | 
| 207 | 
            +
                    """
         | 
| 208 | 
            +
                    if not hasattr(self.unet, "_hf_hook"):
         | 
| 209 | 
            +
                        return self.device
         | 
| 210 | 
            +
                    for module in self.unet.modules():
         | 
| 211 | 
            +
                        if (hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None):
         | 
| 212 | 
            +
                            return torch.device(module._hf_hook.execution_device)
         | 
| 213 | 
            +
                    return self.device
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                def _encode_prompt(
         | 
| 216 | 
            +
                    self,
         | 
| 217 | 
            +
                    prompt,
         | 
| 218 | 
            +
                    device,
         | 
| 219 | 
            +
                    num_images_per_prompt,
         | 
| 220 | 
            +
                    do_classifier_free_guidance: bool,
         | 
| 221 | 
            +
                    negative_prompt=None,
         | 
| 222 | 
            +
                ):
         | 
| 223 | 
            +
                    r"""
         | 
| 224 | 
            +
                    Encodes the prompt into text encoder hidden states.
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    Args:
         | 
| 227 | 
            +
                         prompt (`str` or `List[str]`, *optional*):
         | 
| 228 | 
            +
                            prompt to be encoded
         | 
| 229 | 
            +
                        device: (`torch.device`):
         | 
| 230 | 
            +
                            torch device
         | 
| 231 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 232 | 
            +
                            number of images that should be generated per prompt
         | 
| 233 | 
            +
                        do_classifier_free_guidance (`bool`):
         | 
| 234 | 
            +
                            whether to use classifier free guidance or not
         | 
| 235 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 236 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 237 | 
            +
                            `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
         | 
| 238 | 
            +
                            Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
         | 
| 239 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 240 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 241 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 242 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 243 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 244 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 245 | 
            +
                            argument.
         | 
| 246 | 
            +
                    """
         | 
| 247 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 248 | 
            +
                        batch_size = 1
         | 
| 249 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 250 | 
            +
                        batch_size = len(prompt)
         | 
| 251 | 
            +
                    else:
         | 
| 252 | 
            +
                        raise ValueError(f"`prompt` should be either a string or a list of strings, but got {type(prompt)}.")
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    text_inputs = self.tokenizer(
         | 
| 255 | 
            +
                        prompt,
         | 
| 256 | 
            +
                        padding="max_length",
         | 
| 257 | 
            +
                        max_length=self.tokenizer.model_max_length,
         | 
| 258 | 
            +
                        truncation=True,
         | 
| 259 | 
            +
                        return_tensors="pt",
         | 
| 260 | 
            +
                    )
         | 
| 261 | 
            +
                    text_input_ids = text_inputs.input_ids
         | 
| 262 | 
            +
                    untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         | 
| 265 | 
            +
                        removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1])
         | 
| 266 | 
            +
                        logger.warning("The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 267 | 
            +
                                        f" {self.tokenizer.model_max_length} tokens: {removed_text}")
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
         | 
| 270 | 
            +
                        attention_mask = text_inputs.attention_mask.to(device)
         | 
| 271 | 
            +
                    else:
         | 
| 272 | 
            +
                        attention_mask = None
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    prompt_embeds = self.text_encoder(
         | 
| 275 | 
            +
                        text_input_ids.to(device),
         | 
| 276 | 
            +
                        attention_mask=attention_mask,
         | 
| 277 | 
            +
                    )
         | 
| 278 | 
            +
                    prompt_embeds = prompt_embeds[0]
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 283 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 284 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 285 | 
            +
                    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    # get unconditional embeddings for classifier free guidance
         | 
| 288 | 
            +
                    if do_classifier_free_guidance:
         | 
| 289 | 
            +
                        uncond_tokens: List[str]
         | 
| 290 | 
            +
                        if negative_prompt is None:
         | 
| 291 | 
            +
                            uncond_tokens = [""] * batch_size
         | 
| 292 | 
            +
                        elif type(prompt) is not type(negative_prompt):
         | 
| 293 | 
            +
                            raise TypeError(f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 294 | 
            +
                                            f" {type(prompt)}.")
         | 
| 295 | 
            +
                        elif isinstance(negative_prompt, str):
         | 
| 296 | 
            +
                            uncond_tokens = [negative_prompt]
         | 
| 297 | 
            +
                        elif batch_size != len(negative_prompt):
         | 
| 298 | 
            +
                            raise ValueError(f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 299 | 
            +
                                             f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 300 | 
            +
                                             " the batch size of `prompt`.")
         | 
| 301 | 
            +
                        else:
         | 
| 302 | 
            +
                            uncond_tokens = negative_prompt
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                        max_length = prompt_embeds.shape[1]
         | 
| 305 | 
            +
                        uncond_input = self.tokenizer(
         | 
| 306 | 
            +
                            uncond_tokens,
         | 
| 307 | 
            +
                            padding="max_length",
         | 
| 308 | 
            +
                            max_length=max_length,
         | 
| 309 | 
            +
                            truncation=True,
         | 
| 310 | 
            +
                            return_tensors="pt",
         | 
| 311 | 
            +
                        )
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
         | 
| 314 | 
            +
                            attention_mask = uncond_input.attention_mask.to(device)
         | 
| 315 | 
            +
                        else:
         | 
| 316 | 
            +
                            attention_mask = None
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                        negative_prompt_embeds = self.text_encoder(
         | 
| 319 | 
            +
                            uncond_input.input_ids.to(device),
         | 
| 320 | 
            +
                            attention_mask=attention_mask,
         | 
| 321 | 
            +
                        )
         | 
| 322 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds[0]
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 325 | 
            +
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 330 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                        # For classifier free guidance, we need to do two forward passes.
         | 
| 333 | 
            +
                        # Here we concatenate the unconditional and text embeddings into a single batch
         | 
| 334 | 
            +
                        # to avoid doing two forward passes
         | 
| 335 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    return prompt_embeds
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                def decode_latents(self, latents):
         | 
| 340 | 
            +
                    latents = 1 / self.vae.config.scaling_factor * latents
         | 
| 341 | 
            +
                    image = self.vae.decode(latents).sample
         | 
| 342 | 
            +
                    image = (image / 2 + 0.5).clamp(0, 1)
         | 
| 343 | 
            +
                    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
         | 
| 344 | 
            +
                    image = image.cpu().permute(0, 2, 3, 1).float().numpy()
         | 
| 345 | 
            +
                    return image
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         | 
| 348 | 
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         | 
| 349 | 
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         | 
| 350 | 
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 351 | 
            +
                    # and should be between [0, 1]
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 354 | 
            +
                    extra_step_kwargs = {}
         | 
| 355 | 
            +
                    if accepts_eta:
         | 
| 356 | 
            +
                        extra_step_kwargs["eta"] = eta
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    # check if the scheduler accepts generator
         | 
| 359 | 
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 360 | 
            +
                    if accepts_generator:
         | 
| 361 | 
            +
                        extra_step_kwargs["generator"] = generator
         | 
| 362 | 
            +
                    return extra_step_kwargs
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         | 
| 365 | 
            +
                    shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
         | 
| 366 | 
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 367 | 
            +
                        raise ValueError(f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 368 | 
            +
                                         f" size of {batch_size}. Make sure the batch size matches the length of the generators.")
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    if latents is None:
         | 
| 371 | 
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 372 | 
            +
                    else:
         | 
| 373 | 
            +
                        latents = latents.to(device)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         | 
| 376 | 
            +
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 377 | 
            +
                    return latents
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                @torch.no_grad()
         | 
| 380 | 
            +
                def __call__(
         | 
| 381 | 
            +
                    self,
         | 
| 382 | 
            +
                    prompt: str = "a car",
         | 
| 383 | 
            +
                    height: int = 256,
         | 
| 384 | 
            +
                    width: int = 256,
         | 
| 385 | 
            +
                    num_inference_steps: int = 50,
         | 
| 386 | 
            +
                    guidance_scale: float = 7.0,
         | 
| 387 | 
            +
                    negative_prompt: str = "bad quality",
         | 
| 388 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 389 | 
            +
                    eta: float = 0.0,
         | 
| 390 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 391 | 
            +
                    output_type: Optional[str] = "image",
         | 
| 392 | 
            +
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 393 | 
            +
                    callback_steps: int = 1,
         | 
| 394 | 
            +
                    batch_size: int = 4,
         | 
| 395 | 
            +
                    device = torch.device("cuda:0"),
         | 
| 396 | 
            +
                ):
         | 
| 397 | 
            +
                    self.unet = self.unet.to(device=device)
         | 
| 398 | 
            +
                    self.vae = self.vae.to(device=device)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    self.text_encoder = self.text_encoder.to(device=device)
         | 
| 401 | 
            +
             | 
| 402 | 
            +
             | 
| 403 | 
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 404 | 
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 405 | 
            +
                    # corresponds to doing no classifier free guidance.
         | 
| 406 | 
            +
                    do_classifier_free_guidance = guidance_scale > 1.0
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                    # Prepare timesteps
         | 
| 409 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 410 | 
            +
                    timesteps = self.scheduler.timesteps
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                    _prompt_embeds: torch.Tensor = self._encode_prompt(
         | 
| 413 | 
            +
                        prompt=prompt,
         | 
| 414 | 
            +
                        device=device,
         | 
| 415 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 416 | 
            +
                        do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 417 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 418 | 
            +
                    ) # type: ignore
         | 
| 419 | 
            +
                    prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    # Prepare latent variables
         | 
| 422 | 
            +
                    latents: torch.Tensor = self.prepare_latents(
         | 
| 423 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 424 | 
            +
                        4,
         | 
| 425 | 
            +
                        height,
         | 
| 426 | 
            +
                        width,
         | 
| 427 | 
            +
                        prompt_embeds_pos.dtype,
         | 
| 428 | 
            +
                        device,
         | 
| 429 | 
            +
                        generator,
         | 
| 430 | 
            +
                        None,
         | 
| 431 | 
            +
                    )
         | 
| 432 | 
            +
                    
         | 
| 433 | 
            +
                    camera = get_camera(batch_size).to(dtype=latents.dtype, device=device)
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    # Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 436 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    # Denoising loop
         | 
| 439 | 
            +
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 440 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 441 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 442 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 443 | 
            +
                            multiplier = 2 if do_classifier_free_guidance else 1
         | 
| 444 | 
            +
                            latent_model_input = torch.cat([latents] * multiplier)
         | 
| 445 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                            # predict the noise residual
         | 
| 448 | 
            +
                            noise_pred = self.unet.forward(
         | 
| 449 | 
            +
                                x=latent_model_input,
         | 
| 450 | 
            +
                                timesteps=torch.tensor([t] * 4 * multiplier, dtype=latent_model_input.dtype, device=device),
         | 
| 451 | 
            +
                                context=torch.cat([prompt_embeds_neg] * 4 + [prompt_embeds_pos] * 4),
         | 
| 452 | 
            +
                                num_frames=4,
         | 
| 453 | 
            +
                                camera=torch.cat([camera] * multiplier),
         | 
| 454 | 
            +
                            )
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                            # perform guidance
         | 
| 457 | 
            +
                            if do_classifier_free_guidance:
         | 
| 458 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 459 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 462 | 
            +
                            # latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
         | 
| 463 | 
            +
                            latents: torch.Tensor = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                            # call the callback, if provided
         | 
| 466 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 467 | 
            +
                                progress_bar.update()
         | 
| 468 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 469 | 
            +
                                    callback(i, t, latents) # type: ignore
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    # Post-processing
         | 
| 472 | 
            +
                    if output_type == "latent":
         | 
| 473 | 
            +
                        image = latents
         | 
| 474 | 
            +
                    elif output_type == "pil":
         | 
| 475 | 
            +
                        image = self.decode_latents(latents)
         | 
| 476 | 
            +
                        image = self.numpy_to_pil(image)
         | 
| 477 | 
            +
                    else:
         | 
| 478 | 
            +
                        image = self.decode_latents(latents)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    # Offload last model to CPU
         | 
| 481 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 482 | 
            +
                        self.final_offload_hook.offload()
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    return image
         | 
    	
        mvdream/util.py
    ADDED
    
    | @@ -0,0 +1,320 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # adopted from
         | 
| 2 | 
            +
            # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
         | 
| 3 | 
            +
            # and
         | 
| 4 | 
            +
            # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         | 
| 5 | 
            +
            # and
         | 
| 6 | 
            +
            # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            # thanks!
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import math
         | 
| 11 | 
            +
            import torch
         | 
| 12 | 
            +
            import torch.nn as nn
         | 
| 13 | 
            +
            import numpy as np
         | 
| 14 | 
            +
            import importlib
         | 
| 15 | 
            +
            from einops import repeat
         | 
| 16 | 
            +
            from typing import Any
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            def instantiate_from_config(config):
         | 
| 20 | 
            +
                if not "target" in config:
         | 
| 21 | 
            +
                    if config == '__is_first_stage__':
         | 
| 22 | 
            +
                        return None
         | 
| 23 | 
            +
                    elif config == "__is_unconditional__":
         | 
| 24 | 
            +
                        return None
         | 
| 25 | 
            +
                    raise KeyError("Expected key `target` to instantiate.")
         | 
| 26 | 
            +
                return get_obj_from_str(config["target"])(**config.get("params", dict()))
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            def get_obj_from_str(string, reload=False):
         | 
| 30 | 
            +
                module, cls = string.rsplit(".", 1)
         | 
| 31 | 
            +
                if reload:
         | 
| 32 | 
            +
                    module_imp = importlib.import_module(module)
         | 
| 33 | 
            +
                    importlib.reload(module_imp)
         | 
| 34 | 
            +
                return getattr(importlib.import_module(module, package=None), cls)
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            def make_beta_schedule(schedule,
         | 
| 38 | 
            +
                                   n_timestep,
         | 
| 39 | 
            +
                                   linear_start=1e-4,
         | 
| 40 | 
            +
                                   linear_end=2e-2,
         | 
| 41 | 
            +
                                   cosine_s=8e-3):
         | 
| 42 | 
            +
                if schedule == "linear":
         | 
| 43 | 
            +
                    betas = (torch.linspace(linear_start**0.5,
         | 
| 44 | 
            +
                                            linear_end**0.5,
         | 
| 45 | 
            +
                                            n_timestep,
         | 
| 46 | 
            +
                                            dtype=torch.float64)**2)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                elif schedule == "cosine":
         | 
| 49 | 
            +
                    timesteps = (
         | 
| 50 | 
            +
                        torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep +
         | 
| 51 | 
            +
                        cosine_s)
         | 
| 52 | 
            +
                    alphas = timesteps / (1 + cosine_s) * np.pi / 2
         | 
| 53 | 
            +
                    alphas = torch.cos(alphas).pow(2)
         | 
| 54 | 
            +
                    alphas = alphas / alphas[0]
         | 
| 55 | 
            +
                    betas = 1 - alphas[1:] / alphas[:-1]
         | 
| 56 | 
            +
                    betas = np.clip(betas, a_min=0, a_max=0.999)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                elif schedule == "sqrt_linear":
         | 
| 59 | 
            +
                    betas = torch.linspace(linear_start,
         | 
| 60 | 
            +
                                           linear_end,
         | 
| 61 | 
            +
                                           n_timestep,
         | 
| 62 | 
            +
                                           dtype=torch.float64)
         | 
| 63 | 
            +
                elif schedule == "sqrt":
         | 
| 64 | 
            +
                    betas = torch.linspace(linear_start,
         | 
| 65 | 
            +
                                           linear_end,
         | 
| 66 | 
            +
                                           n_timestep,
         | 
| 67 | 
            +
                                           dtype=torch.float64)**0.5
         | 
| 68 | 
            +
                else:
         | 
| 69 | 
            +
                    raise ValueError(f"schedule '{schedule}' unknown.")
         | 
| 70 | 
            +
                return betas.numpy()  # type: ignore
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            def make_ddim_timesteps(ddim_discr_method,
         | 
| 74 | 
            +
                                    num_ddim_timesteps,
         | 
| 75 | 
            +
                                    num_ddpm_timesteps,
         | 
| 76 | 
            +
                                    verbose=True):
         | 
| 77 | 
            +
                if ddim_discr_method == 'uniform':
         | 
| 78 | 
            +
                    c = num_ddpm_timesteps // num_ddim_timesteps
         | 
| 79 | 
            +
                    ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
         | 
| 80 | 
            +
                elif ddim_discr_method == 'quad':
         | 
| 81 | 
            +
                    ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8),
         | 
| 82 | 
            +
                                                   num_ddim_timesteps))**2).astype(int)
         | 
| 83 | 
            +
                else:
         | 
| 84 | 
            +
                    raise NotImplementedError(
         | 
| 85 | 
            +
                        f'There is no ddim discretization method called "{ddim_discr_method}"'
         | 
| 86 | 
            +
                    )
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                # assert ddim_timesteps.shape[0] == num_ddim_timesteps
         | 
| 89 | 
            +
                # add one to get the final alpha values right (the ones from first scale to data during sampling)
         | 
| 90 | 
            +
                steps_out = ddim_timesteps + 1
         | 
| 91 | 
            +
                if verbose:
         | 
| 92 | 
            +
                    print(f'Selected timesteps for ddim sampler: {steps_out}')
         | 
| 93 | 
            +
                return steps_out
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            def make_ddim_sampling_parameters(alphacums,
         | 
| 97 | 
            +
                                              ddim_timesteps,
         | 
| 98 | 
            +
                                              eta,
         | 
| 99 | 
            +
                                              verbose=True):
         | 
| 100 | 
            +
                # select alphas for computing the variance schedule
         | 
| 101 | 
            +
                alphas = alphacums[ddim_timesteps]
         | 
| 102 | 
            +
                alphas_prev = np.asarray([alphacums[0]] +
         | 
| 103 | 
            +
                                         alphacums[ddim_timesteps[:-1]].tolist())
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                # according the the formula provided in https://arxiv.org/abs/2010.02502
         | 
| 106 | 
            +
                sigmas = eta * np.sqrt(
         | 
| 107 | 
            +
                    (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
         | 
| 108 | 
            +
                if verbose:
         | 
| 109 | 
            +
                    print(
         | 
| 110 | 
            +
                        f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}'
         | 
| 111 | 
            +
                    )
         | 
| 112 | 
            +
                    print(
         | 
| 113 | 
            +
                        f'For the chosen value of eta, which is {eta}, '
         | 
| 114 | 
            +
                        f'this results in the following sigma_t schedule for ddim sampler {sigmas}'
         | 
| 115 | 
            +
                    )
         | 
| 116 | 
            +
                return sigmas, alphas, alphas_prev
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
         | 
| 120 | 
            +
                """
         | 
| 121 | 
            +
                Create a beta schedule that discretizes the given alpha_t_bar function,
         | 
| 122 | 
            +
                which defines the cumulative product of (1-beta) over time from t = [0,1].
         | 
| 123 | 
            +
                :param num_diffusion_timesteps: the number of betas to produce.
         | 
| 124 | 
            +
                :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
         | 
| 125 | 
            +
                                  produces the cumulative product of (1-beta) up to that
         | 
| 126 | 
            +
                                  part of the diffusion process.
         | 
| 127 | 
            +
                :param max_beta: the maximum beta to use; use values lower than 1 to
         | 
| 128 | 
            +
                                 prevent singularities.
         | 
| 129 | 
            +
                """
         | 
| 130 | 
            +
                betas = []
         | 
| 131 | 
            +
                for i in range(num_diffusion_timesteps):
         | 
| 132 | 
            +
                    t1 = i / num_diffusion_timesteps
         | 
| 133 | 
            +
                    t2 = (i + 1) / num_diffusion_timesteps
         | 
| 134 | 
            +
                    betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
         | 
| 135 | 
            +
                return np.array(betas)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
            +
            def extract_into_tensor(a, t, x_shape):
         | 
| 139 | 
            +
                b, *_ = t.shape
         | 
| 140 | 
            +
                out = a.gather(-1, t)
         | 
| 141 | 
            +
                return out.reshape(b, *((1, ) * (len(x_shape) - 1)))
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
            def checkpoint(func, inputs, params, flag):
         | 
| 145 | 
            +
                """
         | 
| 146 | 
            +
                Evaluate a function without caching intermediate activations, allowing for
         | 
| 147 | 
            +
                reduced memory at the expense of extra compute in the backward pass.
         | 
| 148 | 
            +
                :param func: the function to evaluate.
         | 
| 149 | 
            +
                :param inputs: the argument sequence to pass to `func`.
         | 
| 150 | 
            +
                :param params: a sequence of parameters `func` depends on but does not
         | 
| 151 | 
            +
                               explicitly take as arguments.
         | 
| 152 | 
            +
                :param flag: if False, disable gradient checkpointing.
         | 
| 153 | 
            +
                """
         | 
| 154 | 
            +
                if flag:
         | 
| 155 | 
            +
                    args = tuple(inputs) + tuple(params)
         | 
| 156 | 
            +
                    return CheckpointFunction.apply(func, len(inputs), *args)
         | 
| 157 | 
            +
                else:
         | 
| 158 | 
            +
                    return func(*inputs)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
             | 
| 161 | 
            +
            class CheckpointFunction(torch.autograd.Function):
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                @staticmethod
         | 
| 164 | 
            +
                def forward(ctx, run_function, length, *args):
         | 
| 165 | 
            +
                    ctx.run_function = run_function
         | 
| 166 | 
            +
                    ctx.input_tensors = list(args[:length])
         | 
| 167 | 
            +
                    ctx.input_params = list(args[length:])
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    with torch.no_grad():
         | 
| 170 | 
            +
                        output_tensors = ctx.run_function(*ctx.input_tensors)
         | 
| 171 | 
            +
                    return output_tensors
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                @staticmethod
         | 
| 174 | 
            +
                def backward(ctx, *output_grads):
         | 
| 175 | 
            +
                    ctx.input_tensors = [
         | 
| 176 | 
            +
                        x.detach().requires_grad_(True) for x in ctx.input_tensors
         | 
| 177 | 
            +
                    ]
         | 
| 178 | 
            +
                    with torch.enable_grad():
         | 
| 179 | 
            +
                        # Fixes a bug where the first op in run_function modifies the
         | 
| 180 | 
            +
                        # Tensor storage in place, which is not allowed for detach()'d
         | 
| 181 | 
            +
                        # Tensors.
         | 
| 182 | 
            +
                        shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
         | 
| 183 | 
            +
                        output_tensors = ctx.run_function(*shallow_copies)
         | 
| 184 | 
            +
                    input_grads = torch.autograd.grad(
         | 
| 185 | 
            +
                        output_tensors,
         | 
| 186 | 
            +
                        ctx.input_tensors + ctx.input_params,
         | 
| 187 | 
            +
                        output_grads,
         | 
| 188 | 
            +
                        allow_unused=True,
         | 
| 189 | 
            +
                    )
         | 
| 190 | 
            +
                    del ctx.input_tensors
         | 
| 191 | 
            +
                    del ctx.input_params
         | 
| 192 | 
            +
                    del output_tensors
         | 
| 193 | 
            +
                    return (None, None) + input_grads
         | 
| 194 | 
            +
             | 
| 195 | 
            +
             | 
| 196 | 
            +
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         | 
| 197 | 
            +
                """
         | 
| 198 | 
            +
                Create sinusoidal timestep embeddings.
         | 
| 199 | 
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         | 
| 200 | 
            +
                                  These may be fractional.
         | 
| 201 | 
            +
                :param dim: the dimension of the output.
         | 
| 202 | 
            +
                :param max_period: controls the minimum frequency of the embeddings.
         | 
| 203 | 
            +
                :return: an [N x dim] Tensor of positional embeddings.
         | 
| 204 | 
            +
                """
         | 
| 205 | 
            +
                if not repeat_only:
         | 
| 206 | 
            +
                    half = dim // 2
         | 
| 207 | 
            +
                    freqs = torch.exp(
         | 
| 208 | 
            +
                        -math.log(max_period) *
         | 
| 209 | 
            +
                        torch.arange(start=0, end=half, dtype=torch.float32) /
         | 
| 210 | 
            +
                        half).to(device=timesteps.device)
         | 
| 211 | 
            +
                    args = timesteps[:, None] * freqs[None]
         | 
| 212 | 
            +
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 213 | 
            +
                    if dim % 2:
         | 
| 214 | 
            +
                        embedding = torch.cat(
         | 
| 215 | 
            +
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
         | 
| 216 | 
            +
                else:
         | 
| 217 | 
            +
                    embedding = repeat(timesteps, 'b -> b d', d=dim)
         | 
| 218 | 
            +
                # import pdb; pdb.set_trace()
         | 
| 219 | 
            +
                return embedding
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
            def zero_module(module):
         | 
| 223 | 
            +
                """
         | 
| 224 | 
            +
                Zero out the parameters of a module and return it.
         | 
| 225 | 
            +
                """
         | 
| 226 | 
            +
                for p in module.parameters():
         | 
| 227 | 
            +
                    p.detach().zero_()
         | 
| 228 | 
            +
                return module
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            def scale_module(module, scale):
         | 
| 232 | 
            +
                """
         | 
| 233 | 
            +
                Scale the parameters of a module and return it.
         | 
| 234 | 
            +
                """
         | 
| 235 | 
            +
                for p in module.parameters():
         | 
| 236 | 
            +
                    p.detach().mul_(scale)
         | 
| 237 | 
            +
                return module
         | 
| 238 | 
            +
             | 
| 239 | 
            +
             | 
| 240 | 
            +
            def mean_flat(tensor):
         | 
| 241 | 
            +
                """
         | 
| 242 | 
            +
                Take the mean over all non-batch dimensions.
         | 
| 243 | 
            +
                """
         | 
| 244 | 
            +
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         | 
| 245 | 
            +
             | 
| 246 | 
            +
             | 
| 247 | 
            +
            def normalization(channels):
         | 
| 248 | 
            +
                """
         | 
| 249 | 
            +
                Make a standard normalization layer.
         | 
| 250 | 
            +
                :param channels: number of input channels.
         | 
| 251 | 
            +
                :return: an nn.Module for normalization.
         | 
| 252 | 
            +
                """
         | 
| 253 | 
            +
                return GroupNorm32(32, channels)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
             | 
| 256 | 
            +
            # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
         | 
| 257 | 
            +
            class SiLU(nn.Module):
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def forward(self, x):
         | 
| 260 | 
            +
                    return x * torch.sigmoid(x)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
             | 
| 263 | 
            +
            class GroupNorm32(nn.GroupNorm):
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                def forward(self, x):
         | 
| 266 | 
            +
                    return super().forward(x)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
             | 
| 269 | 
            +
            def conv_nd(dims, *args, **kwargs):
         | 
| 270 | 
            +
                """
         | 
| 271 | 
            +
                Create a 1D, 2D, or 3D convolution module.
         | 
| 272 | 
            +
                """
         | 
| 273 | 
            +
                if dims == 1:
         | 
| 274 | 
            +
                    return nn.Conv1d(*args, **kwargs)
         | 
| 275 | 
            +
                elif dims == 2:
         | 
| 276 | 
            +
                    return nn.Conv2d(*args, **kwargs)
         | 
| 277 | 
            +
                elif dims == 3:
         | 
| 278 | 
            +
                    return nn.Conv3d(*args, **kwargs)
         | 
| 279 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 280 | 
            +
             | 
| 281 | 
            +
             | 
| 282 | 
            +
            def linear(*args, **kwargs):
         | 
| 283 | 
            +
                """
         | 
| 284 | 
            +
                Create a linear module.
         | 
| 285 | 
            +
                """
         | 
| 286 | 
            +
                return nn.Linear(*args, **kwargs)
         | 
| 287 | 
            +
             | 
| 288 | 
            +
             | 
| 289 | 
            +
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 290 | 
            +
                """
         | 
| 291 | 
            +
                Create a 1D, 2D, or 3D average pooling module.
         | 
| 292 | 
            +
                """
         | 
| 293 | 
            +
                if dims == 1:
         | 
| 294 | 
            +
                    return nn.AvgPool1d(*args, **kwargs)
         | 
| 295 | 
            +
                elif dims == 2:
         | 
| 296 | 
            +
                    return nn.AvgPool2d(*args, **kwargs)
         | 
| 297 | 
            +
                elif dims == 3:
         | 
| 298 | 
            +
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 299 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 300 | 
            +
             | 
| 301 | 
            +
             | 
| 302 | 
            +
            class HybridConditioner(nn.Module):
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                def __init__(self, c_concat_config, c_crossattn_config):
         | 
| 305 | 
            +
                    super().__init__()
         | 
| 306 | 
            +
                    self.concat_conditioner: Any = instantiate_from_config(c_concat_config)
         | 
| 307 | 
            +
                    self.crossattn_conditioner: Any = instantiate_from_config(
         | 
| 308 | 
            +
                        c_crossattn_config)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                def forward(self, c_concat, c_crossattn):
         | 
| 311 | 
            +
                    c_concat = self.concat_conditioner(c_concat)
         | 
| 312 | 
            +
                    c_crossattn = self.crossattn_conditioner(c_crossattn)
         | 
| 313 | 
            +
                    return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
         | 
| 314 | 
            +
             | 
| 315 | 
            +
             | 
| 316 | 
            +
            def noise_like(shape, device, repeat=False):
         | 
| 317 | 
            +
                repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
         | 
| 318 | 
            +
                    shape[0], *((1, ) * (len(shape) - 1)))
         | 
| 319 | 
            +
                noise = lambda: torch.randn(shape, device=device)
         | 
| 320 | 
            +
                return repeat_noise() if repeat else noise()
         | 
