Training in progress, step 2000, checkpoint
Browse files- checkpoint-2000/config.json +82 -0
- checkpoint-2000/global_step2000/mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/latest +1 -0
- checkpoint-2000/model.safetensors +3 -0
- checkpoint-2000/preprocessor_config.json +11 -0
- checkpoint-2000/rng_state_0.pth +3 -0
- checkpoint-2000/rng_state_1.pth +3 -0
- checkpoint-2000/scheduler.pt +3 -0
- checkpoint-2000/trainer_state.json +742 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-2000/zero_to_fp32.py +604 -0
checkpoint-2000/config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "kdcyberdude/w2v-multilingual-v1.0",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"adapter_act": "relu",
|
5 |
+
"adapter_kernel_size": 3,
|
6 |
+
"adapter_stride": 2,
|
7 |
+
"add_adapter": true,
|
8 |
+
"apply_spec_augment": true,
|
9 |
+
"architectures": [
|
10 |
+
"Wav2Vec2BertForCTC"
|
11 |
+
],
|
12 |
+
"attention_dropout": 0.0,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"classifier_proj_size": 768,
|
15 |
+
"codevector_dim": 768,
|
16 |
+
"conformer_conv_dropout": 0.1,
|
17 |
+
"contrastive_logits_temperature": 0.1,
|
18 |
+
"conv_depthwise_kernel_size": 31,
|
19 |
+
"ctc_loss_reduction": "mean",
|
20 |
+
"ctc_zero_infinity": true,
|
21 |
+
"diversity_loss_weight": 0.1,
|
22 |
+
"eos_token_id": 2,
|
23 |
+
"feat_proj_dropout": 0.0,
|
24 |
+
"feat_quantizer_dropout": 0.0,
|
25 |
+
"feature_projection_input_dim": 160,
|
26 |
+
"final_dropout": 0.1,
|
27 |
+
"hidden_act": "swish",
|
28 |
+
"hidden_dropout": 0.0,
|
29 |
+
"hidden_size": 1024,
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 4096,
|
32 |
+
"layer_norm_eps": 1e-05,
|
33 |
+
"layerdrop": 0.0,
|
34 |
+
"left_max_position_embeddings": 64,
|
35 |
+
"mask_feature_length": 10,
|
36 |
+
"mask_feature_min_masks": 0,
|
37 |
+
"mask_feature_prob": 0.0,
|
38 |
+
"mask_time_length": 10,
|
39 |
+
"mask_time_min_masks": 2,
|
40 |
+
"mask_time_prob": 0.0,
|
41 |
+
"max_source_positions": 5000,
|
42 |
+
"model_type": "wav2vec2-bert",
|
43 |
+
"num_adapter_layers": 1,
|
44 |
+
"num_attention_heads": 16,
|
45 |
+
"num_codevector_groups": 2,
|
46 |
+
"num_codevectors_per_group": 320,
|
47 |
+
"num_hidden_layers": 24,
|
48 |
+
"num_negatives": 100,
|
49 |
+
"output_hidden_size": 1024,
|
50 |
+
"pad_token_id": 221,
|
51 |
+
"position_embeddings_type": "relative_key",
|
52 |
+
"proj_codevector_dim": 768,
|
53 |
+
"right_max_position_embeddings": 8,
|
54 |
+
"rotary_embedding_base": 10000,
|
55 |
+
"tdnn_dilation": [
|
56 |
+
1,
|
57 |
+
2,
|
58 |
+
3,
|
59 |
+
1,
|
60 |
+
1
|
61 |
+
],
|
62 |
+
"tdnn_dim": [
|
63 |
+
512,
|
64 |
+
512,
|
65 |
+
512,
|
66 |
+
512,
|
67 |
+
1500
|
68 |
+
],
|
69 |
+
"tdnn_kernel": [
|
70 |
+
5,
|
71 |
+
3,
|
72 |
+
3,
|
73 |
+
1,
|
74 |
+
1
|
75 |
+
],
|
76 |
+
"torch_dtype": "float16",
|
77 |
+
"transformers_version": "4.48.2",
|
78 |
+
"use_intermediate_ffn_before_adapter": true,
|
79 |
+
"use_weighted_layer_sum": false,
|
80 |
+
"vocab_size": 224,
|
81 |
+
"xvector_output_dim": 512
|
82 |
+
}
|
checkpoint-2000/global_step2000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a96c42ed3f36391f1c2538da9e8c979b7b33d41bc32042b9894e02272a8cff50
|
3 |
+
size 1228864248
|
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af72f105e0998837fc3a4da3366ee8df55b8e91287b3696d7e71bf1b192724d1
|
3 |
+
size 3685848510
|
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09e830400d593b82493ba7e4476e5bce2651bc5219133da1ba8ccd69f234199d
|
3 |
+
size 3685847294
|
checkpoint-2000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2000
|
checkpoint-2000/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aefe673b5c7a0562ed83534c1cc87ba53c50058c71672495a4bd5920db18e033
|
3 |
+
size 1228706240
|
checkpoint-2000/preprocessor_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"feature_extractor_type": "SeamlessM4TFeatureExtractor",
|
3 |
+
"feature_size": 80,
|
4 |
+
"num_mel_bins": 80,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 1,
|
7 |
+
"processor_class": "M4TProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000,
|
10 |
+
"stride": 2
|
11 |
+
}
|
checkpoint-2000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b88c07b734f0394fa3460acdd30bd1c1ecdbec8c4fe935e2aa9d3532dcb67c79
|
3 |
+
size 14512
|
checkpoint-2000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71a6b5b9aad93001c2054719d59a5e0b024eae5f275b39ad8ff21c41444c41cb
|
3 |
+
size 14512
|
checkpoint-2000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:202cbce0eb1350cae2e3983bd312bf00c5e92864b59fa07e72237ea2d4c77f91
|
3 |
+
size 1064
|
checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.23469093535410654,
|
3 |
+
"best_model_checkpoint": "./checkpoints/w2v-multilingual-v1.3/checkpoint-2000",
|
4 |
+
"epoch": 0.1647627416520211,
|
5 |
+
"eval_steps": 2000,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001647627416520211,
|
13 |
+
"grad_norm": 0.2767059803009033,
|
14 |
+
"learning_rate": 4.9431537320810675e-08,
|
15 |
+
"loss": 0.1923,
|
16 |
+
"step": 20
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.003295254833040422,
|
20 |
+
"grad_norm": 2.006911039352417,
|
21 |
+
"learning_rate": 1.977261492832427e-07,
|
22 |
+
"loss": 0.2947,
|
23 |
+
"step": 40
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004942882249560633,
|
27 |
+
"grad_norm": 0.3714193105697632,
|
28 |
+
"learning_rate": 3.624979403526116e-07,
|
29 |
+
"loss": 0.2955,
|
30 |
+
"step": 60
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.006590509666080844,
|
34 |
+
"grad_norm": 0.3106062412261963,
|
35 |
+
"learning_rate": 5.272697314219806e-07,
|
36 |
+
"loss": 0.2754,
|
37 |
+
"step": 80
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.008238137082601054,
|
41 |
+
"grad_norm": 3.2078254222869873,
|
42 |
+
"learning_rate": 6.838029329378811e-07,
|
43 |
+
"loss": 0.3177,
|
44 |
+
"step": 100
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.009885764499121265,
|
48 |
+
"grad_norm": 0.38503074645996094,
|
49 |
+
"learning_rate": 8.485747240072501e-07,
|
50 |
+
"loss": 0.1905,
|
51 |
+
"step": 120
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.011533391915641476,
|
55 |
+
"grad_norm": 0.15724419057369232,
|
56 |
+
"learning_rate": 1.013346515076619e-06,
|
57 |
+
"loss": 0.2942,
|
58 |
+
"step": 140
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.013181019332161687,
|
62 |
+
"grad_norm": 0.5840986967086792,
|
63 |
+
"learning_rate": 1.1781183061459877e-06,
|
64 |
+
"loss": 0.2907,
|
65 |
+
"step": 160
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.014828646748681899,
|
69 |
+
"grad_norm": 0.23122897744178772,
|
70 |
+
"learning_rate": 1.3346515076618883e-06,
|
71 |
+
"loss": 0.2811,
|
72 |
+
"step": 180
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.016476274165202108,
|
76 |
+
"grad_norm": 2.7248637676239014,
|
77 |
+
"learning_rate": 1.4994232987312573e-06,
|
78 |
+
"loss": 0.3168,
|
79 |
+
"step": 200
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01812390158172232,
|
83 |
+
"grad_norm": 1.0846350193023682,
|
84 |
+
"learning_rate": 1.6641950898006263e-06,
|
85 |
+
"loss": 0.1979,
|
86 |
+
"step": 220
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01977152899824253,
|
90 |
+
"grad_norm": 1.7905633449554443,
|
91 |
+
"learning_rate": 1.828966880869995e-06,
|
92 |
+
"loss": 0.2656,
|
93 |
+
"step": 240
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.021419156414762743,
|
97 |
+
"grad_norm": 0.31305554509162903,
|
98 |
+
"learning_rate": 1.993738671939364e-06,
|
99 |
+
"loss": 0.272,
|
100 |
+
"step": 260
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.023066783831282953,
|
104 |
+
"grad_norm": 0.31258106231689453,
|
105 |
+
"learning_rate": 2.158510463008733e-06,
|
106 |
+
"loss": 0.2693,
|
107 |
+
"step": 280
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.024714411247803162,
|
111 |
+
"grad_norm": 1.783349871635437,
|
112 |
+
"learning_rate": 2.323282254078102e-06,
|
113 |
+
"loss": 0.3116,
|
114 |
+
"step": 300
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.026362038664323375,
|
118 |
+
"grad_norm": 0.6936488747596741,
|
119 |
+
"learning_rate": 2.488054045147471e-06,
|
120 |
+
"loss": 0.1931,
|
121 |
+
"step": 320
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.028009666080843584,
|
125 |
+
"grad_norm": 0.6185577511787415,
|
126 |
+
"learning_rate": 2.65282583621684e-06,
|
127 |
+
"loss": 0.258,
|
128 |
+
"step": 340
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.029657293497363797,
|
132 |
+
"grad_norm": 0.3592207729816437,
|
133 |
+
"learning_rate": 2.8175976272862085e-06,
|
134 |
+
"loss": 0.2401,
|
135 |
+
"step": 360
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.03130492091388401,
|
139 |
+
"grad_norm": 1.2324920892715454,
|
140 |
+
"learning_rate": 2.982369418355578e-06,
|
141 |
+
"loss": 0.2371,
|
142 |
+
"step": 380
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.032952548330404216,
|
146 |
+
"grad_norm": 1.5560214519500732,
|
147 |
+
"learning_rate": 3.147141209424947e-06,
|
148 |
+
"loss": 0.2414,
|
149 |
+
"step": 400
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.03460017574692443,
|
153 |
+
"grad_norm": 0.8133947253227234,
|
154 |
+
"learning_rate": 3.3119130004943154e-06,
|
155 |
+
"loss": 0.1744,
|
156 |
+
"step": 420
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.03624780316344464,
|
160 |
+
"grad_norm": 0.8599107265472412,
|
161 |
+
"learning_rate": 3.4766847915636844e-06,
|
162 |
+
"loss": 0.2536,
|
163 |
+
"step": 440
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03789543057996485,
|
167 |
+
"grad_norm": 0.3699595034122467,
|
168 |
+
"learning_rate": 3.641456582633054e-06,
|
169 |
+
"loss": 0.2552,
|
170 |
+
"step": 460
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.03954305799648506,
|
174 |
+
"grad_norm": 1.2955116033554077,
|
175 |
+
"learning_rate": 3.797989784148954e-06,
|
176 |
+
"loss": 0.2532,
|
177 |
+
"step": 480
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.041190685413005274,
|
181 |
+
"grad_norm": 11.518170356750488,
|
182 |
+
"learning_rate": 3.962761575218322e-06,
|
183 |
+
"loss": 0.2507,
|
184 |
+
"step": 500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.042838312829525486,
|
188 |
+
"grad_norm": 0.9779248833656311,
|
189 |
+
"learning_rate": 4.127533366287692e-06,
|
190 |
+
"loss": 0.1733,
|
191 |
+
"step": 520
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.04448594024604569,
|
195 |
+
"grad_norm": 0.5386682152748108,
|
196 |
+
"learning_rate": 4.29230515735706e-06,
|
197 |
+
"loss": 0.2415,
|
198 |
+
"step": 540
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.046133567662565905,
|
202 |
+
"grad_norm": 2.7366793155670166,
|
203 |
+
"learning_rate": 4.457076948426429e-06,
|
204 |
+
"loss": 0.2409,
|
205 |
+
"step": 560
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.04778119507908612,
|
209 |
+
"grad_norm": 1.9912066459655762,
|
210 |
+
"learning_rate": 4.621848739495799e-06,
|
211 |
+
"loss": 0.2134,
|
212 |
+
"step": 580
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.049428822495606324,
|
216 |
+
"grad_norm": 4.058573246002197,
|
217 |
+
"learning_rate": 4.786620530565167e-06,
|
218 |
+
"loss": 0.2456,
|
219 |
+
"step": 600
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.05107644991212654,
|
223 |
+
"grad_norm": 0.37456750869750977,
|
224 |
+
"learning_rate": 4.951392321634536e-06,
|
225 |
+
"loss": 0.1589,
|
226 |
+
"step": 620
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.05272407732864675,
|
230 |
+
"grad_norm": 0.7950440645217896,
|
231 |
+
"learning_rate": 5.116164112703905e-06,
|
232 |
+
"loss": 0.2485,
|
233 |
+
"step": 640
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.05437170474516696,
|
237 |
+
"grad_norm": 1.884665846824646,
|
238 |
+
"learning_rate": 5.280935903773274e-06,
|
239 |
+
"loss": 0.2197,
|
240 |
+
"step": 660
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.05601933216168717,
|
244 |
+
"grad_norm": 0.32170844078063965,
|
245 |
+
"learning_rate": 5.445707694842643e-06,
|
246 |
+
"loss": 0.2111,
|
247 |
+
"step": 680
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.05766695957820738,
|
251 |
+
"grad_norm": 1.8230172395706177,
|
252 |
+
"learning_rate": 5.610479485912012e-06,
|
253 |
+
"loss": 0.2379,
|
254 |
+
"step": 700
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.059314586994727594,
|
258 |
+
"grad_norm": 1.2472524642944336,
|
259 |
+
"learning_rate": 5.775251276981381e-06,
|
260 |
+
"loss": 0.1684,
|
261 |
+
"step": 720
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.0609622144112478,
|
265 |
+
"grad_norm": 0.29022061824798584,
|
266 |
+
"learning_rate": 5.94002306805075e-06,
|
267 |
+
"loss": 0.2201,
|
268 |
+
"step": 740
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.06260984182776802,
|
272 |
+
"grad_norm": 0.49721184372901917,
|
273 |
+
"learning_rate": 6.104794859120118e-06,
|
274 |
+
"loss": 0.2297,
|
275 |
+
"step": 760
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.06425746924428823,
|
279 |
+
"grad_norm": 0.6133716106414795,
|
280 |
+
"learning_rate": 6.269566650189487e-06,
|
281 |
+
"loss": 0.3173,
|
282 |
+
"step": 780
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.06590509666080843,
|
286 |
+
"grad_norm": 0.9667792320251465,
|
287 |
+
"learning_rate": 6.434338441258857e-06,
|
288 |
+
"loss": 0.2349,
|
289 |
+
"step": 800
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.06755272407732865,
|
293 |
+
"grad_norm": 0.3177216053009033,
|
294 |
+
"learning_rate": 6.599110232328226e-06,
|
295 |
+
"loss": 0.1635,
|
296 |
+
"step": 820
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.06920035149384886,
|
300 |
+
"grad_norm": 0.8457621335983276,
|
301 |
+
"learning_rate": 6.763882023397594e-06,
|
302 |
+
"loss": 0.2777,
|
303 |
+
"step": 840
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.07084797891036906,
|
307 |
+
"grad_norm": 0.3330087661743164,
|
308 |
+
"learning_rate": 6.928653814466963e-06,
|
309 |
+
"loss": 0.2154,
|
310 |
+
"step": 860
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.07249560632688928,
|
314 |
+
"grad_norm": 0.5845814943313599,
|
315 |
+
"learning_rate": 7.093425605536333e-06,
|
316 |
+
"loss": 0.2164,
|
317 |
+
"step": 880
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.07414323374340949,
|
321 |
+
"grad_norm": 2.325303554534912,
|
322 |
+
"learning_rate": 7.258197396605701e-06,
|
323 |
+
"loss": 0.2068,
|
324 |
+
"step": 900
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.0757908611599297,
|
328 |
+
"grad_norm": 0.21893823146820068,
|
329 |
+
"learning_rate": 7.414730598121602e-06,
|
330 |
+
"loss": 0.1621,
|
331 |
+
"step": 920
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.07743848857644992,
|
335 |
+
"grad_norm": 0.5854327082633972,
|
336 |
+
"learning_rate": 7.5795023891909705e-06,
|
337 |
+
"loss": 0.2281,
|
338 |
+
"step": 940
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.07908611599297012,
|
342 |
+
"grad_norm": 0.2406030148267746,
|
343 |
+
"learning_rate": 7.74427418026034e-06,
|
344 |
+
"loss": 0.2342,
|
345 |
+
"step": 960
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.08073374340949033,
|
349 |
+
"grad_norm": 1.3764126300811768,
|
350 |
+
"learning_rate": 7.90904597132971e-06,
|
351 |
+
"loss": 0.2018,
|
352 |
+
"step": 980
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.08238137082601055,
|
356 |
+
"grad_norm": 0.9587862491607666,
|
357 |
+
"learning_rate": 8.073817762399077e-06,
|
358 |
+
"loss": 0.2489,
|
359 |
+
"step": 1000
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.08402899824253075,
|
363 |
+
"grad_norm": 0.9726558923721313,
|
364 |
+
"learning_rate": 8.238589553468447e-06,
|
365 |
+
"loss": 0.154,
|
366 |
+
"step": 1020
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.08567662565905097,
|
370 |
+
"grad_norm": 1.9828400611877441,
|
371 |
+
"learning_rate": 8.403361344537817e-06,
|
372 |
+
"loss": 0.2336,
|
373 |
+
"step": 1040
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.08732425307557118,
|
377 |
+
"grad_norm": 0.14761961996555328,
|
378 |
+
"learning_rate": 8.568133135607183e-06,
|
379 |
+
"loss": 0.1949,
|
380 |
+
"step": 1060
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.08897188049209138,
|
384 |
+
"grad_norm": 0.39077144861221313,
|
385 |
+
"learning_rate": 8.732904926676553e-06,
|
386 |
+
"loss": 0.2067,
|
387 |
+
"step": 1080
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.0906195079086116,
|
391 |
+
"grad_norm": 2.3257837295532227,
|
392 |
+
"learning_rate": 8.897676717745921e-06,
|
393 |
+
"loss": 0.2184,
|
394 |
+
"step": 1100
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.09226713532513181,
|
398 |
+
"grad_norm": 1.0966060161590576,
|
399 |
+
"learning_rate": 9.062448508815291e-06,
|
400 |
+
"loss": 0.1655,
|
401 |
+
"step": 1120
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.09391476274165202,
|
405 |
+
"grad_norm": 0.5648412704467773,
|
406 |
+
"learning_rate": 9.227220299884661e-06,
|
407 |
+
"loss": 0.2097,
|
408 |
+
"step": 1140
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.09556239015817224,
|
412 |
+
"grad_norm": 0.49816444516181946,
|
413 |
+
"learning_rate": 9.39199209095403e-06,
|
414 |
+
"loss": 0.2052,
|
415 |
+
"step": 1160
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.09721001757469244,
|
419 |
+
"grad_norm": 1.1164054870605469,
|
420 |
+
"learning_rate": 9.556763882023397e-06,
|
421 |
+
"loss": 0.2298,
|
422 |
+
"step": 1180
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.09885764499121265,
|
426 |
+
"grad_norm": 0.9453270435333252,
|
427 |
+
"learning_rate": 9.721535673092767e-06,
|
428 |
+
"loss": 0.2157,
|
429 |
+
"step": 1200
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.10050527240773287,
|
433 |
+
"grad_norm": 0.4588276743888855,
|
434 |
+
"learning_rate": 9.886307464162135e-06,
|
435 |
+
"loss": 0.1433,
|
436 |
+
"step": 1220
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.10215289982425307,
|
440 |
+
"grad_norm": 0.47535696625709534,
|
441 |
+
"learning_rate": 1.0051079255231505e-05,
|
442 |
+
"loss": 0.2115,
|
443 |
+
"step": 1240
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.10380052724077328,
|
447 |
+
"grad_norm": 0.585959792137146,
|
448 |
+
"learning_rate": 1.0215851046300875e-05,
|
449 |
+
"loss": 0.2245,
|
450 |
+
"step": 1260
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.1054481546572935,
|
454 |
+
"grad_norm": 0.24861204624176025,
|
455 |
+
"learning_rate": 1.0380622837370241e-05,
|
456 |
+
"loss": 0.1981,
|
457 |
+
"step": 1280
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.1070957820738137,
|
461 |
+
"grad_norm": 31.602128982543945,
|
462 |
+
"learning_rate": 1.0545394628439611e-05,
|
463 |
+
"loss": 0.2265,
|
464 |
+
"step": 1300
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.10874340949033393,
|
468 |
+
"grad_norm": 0.6234269142150879,
|
469 |
+
"learning_rate": 1.0710166419508981e-05,
|
470 |
+
"loss": 0.154,
|
471 |
+
"step": 1320
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.11039103690685413,
|
475 |
+
"grad_norm": 1.2423540353775024,
|
476 |
+
"learning_rate": 1.087493821057835e-05,
|
477 |
+
"loss": 0.2062,
|
478 |
+
"step": 1340
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.11203866432337434,
|
482 |
+
"grad_norm": 0.2090279757976532,
|
483 |
+
"learning_rate": 1.1039710001647719e-05,
|
484 |
+
"loss": 0.2214,
|
485 |
+
"step": 1360
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.11368629173989456,
|
489 |
+
"grad_norm": 0.6145613193511963,
|
490 |
+
"learning_rate": 1.1204481792717087e-05,
|
491 |
+
"loss": 0.1942,
|
492 |
+
"step": 1380
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.11533391915641476,
|
496 |
+
"grad_norm": 0.9004138708114624,
|
497 |
+
"learning_rate": 1.1369253583786455e-05,
|
498 |
+
"loss": 0.2271,
|
499 |
+
"step": 1400
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.11698154657293497,
|
503 |
+
"grad_norm": 1.609165906906128,
|
504 |
+
"learning_rate": 1.1534025374855825e-05,
|
505 |
+
"loss": 0.1606,
|
506 |
+
"step": 1420
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.11862917398945519,
|
510 |
+
"grad_norm": 0.8725568652153015,
|
511 |
+
"learning_rate": 1.1698797165925195e-05,
|
512 |
+
"loss": 0.204,
|
513 |
+
"step": 1440
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.1202768014059754,
|
517 |
+
"grad_norm": 1.8169455528259277,
|
518 |
+
"learning_rate": 1.1863568956994563e-05,
|
519 |
+
"loss": 0.207,
|
520 |
+
"step": 1460
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.1219244288224956,
|
524 |
+
"grad_norm": 0.37334388494491577,
|
525 |
+
"learning_rate": 1.2028340748063933e-05,
|
526 |
+
"loss": 0.2033,
|
527 |
+
"step": 1480
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.12357205623901582,
|
531 |
+
"grad_norm": 15.727474212646484,
|
532 |
+
"learning_rate": 1.2193112539133301e-05,
|
533 |
+
"loss": 0.3298,
|
534 |
+
"step": 1500
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.12521968365553604,
|
538 |
+
"grad_norm": 4.70903205871582,
|
539 |
+
"learning_rate": 1.2357884330202669e-05,
|
540 |
+
"loss": 0.159,
|
541 |
+
"step": 1520
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.12686731107205623,
|
545 |
+
"grad_norm": 0.4843326807022095,
|
546 |
+
"learning_rate": 1.2522656121272039e-05,
|
547 |
+
"loss": 0.2141,
|
548 |
+
"step": 1540
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.12851493848857645,
|
552 |
+
"grad_norm": 0.572084367275238,
|
553 |
+
"learning_rate": 1.2687427912341407e-05,
|
554 |
+
"loss": 0.2182,
|
555 |
+
"step": 1560
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.13016256590509667,
|
559 |
+
"grad_norm": 0.31078797578811646,
|
560 |
+
"learning_rate": 1.2852199703410777e-05,
|
561 |
+
"loss": 0.1994,
|
562 |
+
"step": 1580
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.13181019332161686,
|
566 |
+
"grad_norm": 9.014205932617188,
|
567 |
+
"learning_rate": 1.3016971494480145e-05,
|
568 |
+
"loss": 0.2089,
|
569 |
+
"step": 1600
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.13345782073813708,
|
573 |
+
"grad_norm": 1.0150245428085327,
|
574 |
+
"learning_rate": 1.3181743285549513e-05,
|
575 |
+
"loss": 0.1521,
|
576 |
+
"step": 1620
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1351054481546573,
|
580 |
+
"grad_norm": 0.25271451473236084,
|
581 |
+
"learning_rate": 1.3346515076618885e-05,
|
582 |
+
"loss": 0.1996,
|
583 |
+
"step": 1640
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.1367530755711775,
|
587 |
+
"grad_norm": 0.47118502855300903,
|
588 |
+
"learning_rate": 1.3511286867688253e-05,
|
589 |
+
"loss": 0.2059,
|
590 |
+
"step": 1660
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.13840070298769772,
|
594 |
+
"grad_norm": 0.5134350657463074,
|
595 |
+
"learning_rate": 1.3676058658757621e-05,
|
596 |
+
"loss": 0.1935,
|
597 |
+
"step": 1680
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.14004833040421794,
|
601 |
+
"grad_norm": 1.0354816913604736,
|
602 |
+
"learning_rate": 1.384083044982699e-05,
|
603 |
+
"loss": 0.2103,
|
604 |
+
"step": 1700
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.14169595782073813,
|
608 |
+
"grad_norm": 0.5588876605033875,
|
609 |
+
"learning_rate": 1.4005602240896359e-05,
|
610 |
+
"loss": 0.1598,
|
611 |
+
"step": 1720
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.14334358523725835,
|
615 |
+
"grad_norm": 0.7309175133705139,
|
616 |
+
"learning_rate": 1.4170374031965727e-05,
|
617 |
+
"loss": 0.2204,
|
618 |
+
"step": 1740
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.14499121265377857,
|
622 |
+
"grad_norm": 0.6155902743339539,
|
623 |
+
"learning_rate": 1.4335145823035099e-05,
|
624 |
+
"loss": 0.2133,
|
625 |
+
"step": 1760
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.14663884007029876,
|
629 |
+
"grad_norm": 0.7660940885543823,
|
630 |
+
"learning_rate": 1.4499917614104467e-05,
|
631 |
+
"loss": 0.2065,
|
632 |
+
"step": 1780
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.14828646748681898,
|
636 |
+
"grad_norm": 1.1954026222229004,
|
637 |
+
"learning_rate": 1.4664689405173835e-05,
|
638 |
+
"loss": 0.2147,
|
639 |
+
"step": 1800
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1499340949033392,
|
643 |
+
"grad_norm": 0.4249323606491089,
|
644 |
+
"learning_rate": 1.4829461196243205e-05,
|
645 |
+
"loss": 0.1553,
|
646 |
+
"step": 1820
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.1515817223198594,
|
650 |
+
"grad_norm": 2.9014129638671875,
|
651 |
+
"learning_rate": 1.4994232987312573e-05,
|
652 |
+
"loss": 0.2208,
|
653 |
+
"step": 1840
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.1532293497363796,
|
657 |
+
"grad_norm": 1.6474498510360718,
|
658 |
+
"learning_rate": 1.5159004778381941e-05,
|
659 |
+
"loss": 0.209,
|
660 |
+
"step": 1860
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.15487697715289983,
|
664 |
+
"grad_norm": 0.1585623174905777,
|
665 |
+
"learning_rate": 1.532377656945131e-05,
|
666 |
+
"loss": 0.1873,
|
667 |
+
"step": 1880
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.15652460456942002,
|
671 |
+
"grad_norm": 1.171941876411438,
|
672 |
+
"learning_rate": 1.548854836052068e-05,
|
673 |
+
"loss": 0.2389,
|
674 |
+
"step": 1900
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.15817223198594024,
|
678 |
+
"grad_norm": 0.48890382051467896,
|
679 |
+
"learning_rate": 1.5653320151590047e-05,
|
680 |
+
"loss": 0.1679,
|
681 |
+
"step": 1920
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.15981985940246046,
|
685 |
+
"grad_norm": 0.5568016767501831,
|
686 |
+
"learning_rate": 1.581809194265942e-05,
|
687 |
+
"loss": 0.1968,
|
688 |
+
"step": 1940
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.16146748681898065,
|
692 |
+
"grad_norm": 0.9775394797325134,
|
693 |
+
"learning_rate": 1.5982863733728787e-05,
|
694 |
+
"loss": 0.2208,
|
695 |
+
"step": 1960
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.16311511423550087,
|
699 |
+
"grad_norm": 0.60302734375,
|
700 |
+
"learning_rate": 1.6147635524798155e-05,
|
701 |
+
"loss": 0.1929,
|
702 |
+
"step": 1980
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.1647627416520211,
|
706 |
+
"grad_norm": 1.7513552904129028,
|
707 |
+
"learning_rate": 1.6312407315867526e-05,
|
708 |
+
"loss": 0.2055,
|
709 |
+
"step": 2000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.1647627416520211,
|
713 |
+
"eval_loss": 0.5699400305747986,
|
714 |
+
"eval_runtime": 686.8117,
|
715 |
+
"eval_samples_per_second": 31.725,
|
716 |
+
"eval_steps_per_second": 7.932,
|
717 |
+
"eval_wer": 0.23469093535410654,
|
718 |
+
"step": 2000
|
719 |
+
}
|
720 |
+
],
|
721 |
+
"logging_steps": 20,
|
722 |
+
"max_steps": 60690,
|
723 |
+
"num_input_tokens_seen": 0,
|
724 |
+
"num_train_epochs": 5,
|
725 |
+
"save_steps": 2000,
|
726 |
+
"stateful_callbacks": {
|
727 |
+
"TrainerControl": {
|
728 |
+
"args": {
|
729 |
+
"should_epoch_stop": false,
|
730 |
+
"should_evaluate": false,
|
731 |
+
"should_log": false,
|
732 |
+
"should_save": true,
|
733 |
+
"should_training_stop": false
|
734 |
+
},
|
735 |
+
"attributes": {}
|
736 |
+
}
|
737 |
+
},
|
738 |
+
"total_flos": 1.0783600786383307e+20,
|
739 |
+
"train_batch_size": 24,
|
740 |
+
"trial_name": null,
|
741 |
+
"trial_params": null
|
742 |
+
}
|
checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:523a85cdb294d1c4c61a6e49dd5260f441dad9fd7af932d1f950b5017f36ac73
|
3 |
+
size 6648
|
checkpoint-2000/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|