kdcyberdude commited on
Commit
d32342e
·
verified ·
1 Parent(s): 8523e32

Training in progress, step 2000, checkpoint

Browse files
checkpoint-2000/config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "kdcyberdude/w2v-multilingual-v1.0",
3
+ "activation_dropout": 0.0,
4
+ "adapter_act": "relu",
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": true,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2BertForCTC"
11
+ ],
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 768,
15
+ "codevector_dim": 768,
16
+ "conformer_conv_dropout": 0.1,
17
+ "contrastive_logits_temperature": 0.1,
18
+ "conv_depthwise_kernel_size": 31,
19
+ "ctc_loss_reduction": "mean",
20
+ "ctc_zero_infinity": true,
21
+ "diversity_loss_weight": 0.1,
22
+ "eos_token_id": 2,
23
+ "feat_proj_dropout": 0.0,
24
+ "feat_quantizer_dropout": 0.0,
25
+ "feature_projection_input_dim": 160,
26
+ "final_dropout": 0.1,
27
+ "hidden_act": "swish",
28
+ "hidden_dropout": 0.0,
29
+ "hidden_size": 1024,
30
+ "initializer_range": 0.02,
31
+ "intermediate_size": 4096,
32
+ "layer_norm_eps": 1e-05,
33
+ "layerdrop": 0.0,
34
+ "left_max_position_embeddings": 64,
35
+ "mask_feature_length": 10,
36
+ "mask_feature_min_masks": 0,
37
+ "mask_feature_prob": 0.0,
38
+ "mask_time_length": 10,
39
+ "mask_time_min_masks": 2,
40
+ "mask_time_prob": 0.0,
41
+ "max_source_positions": 5000,
42
+ "model_type": "wav2vec2-bert",
43
+ "num_adapter_layers": 1,
44
+ "num_attention_heads": 16,
45
+ "num_codevector_groups": 2,
46
+ "num_codevectors_per_group": 320,
47
+ "num_hidden_layers": 24,
48
+ "num_negatives": 100,
49
+ "output_hidden_size": 1024,
50
+ "pad_token_id": 221,
51
+ "position_embeddings_type": "relative_key",
52
+ "proj_codevector_dim": 768,
53
+ "right_max_position_embeddings": 8,
54
+ "rotary_embedding_base": 10000,
55
+ "tdnn_dilation": [
56
+ 1,
57
+ 2,
58
+ 3,
59
+ 1,
60
+ 1
61
+ ],
62
+ "tdnn_dim": [
63
+ 512,
64
+ 512,
65
+ 512,
66
+ 512,
67
+ 1500
68
+ ],
69
+ "tdnn_kernel": [
70
+ 5,
71
+ 3,
72
+ 3,
73
+ 1,
74
+ 1
75
+ ],
76
+ "torch_dtype": "float16",
77
+ "transformers_version": "4.48.2",
78
+ "use_intermediate_ffn_before_adapter": true,
79
+ "use_weighted_layer_sum": false,
80
+ "vocab_size": 224,
81
+ "xvector_output_dim": 512
82
+ }
checkpoint-2000/global_step2000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a96c42ed3f36391f1c2538da9e8c979b7b33d41bc32042b9894e02272a8cff50
3
+ size 1228864248
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af72f105e0998837fc3a4da3366ee8df55b8e91287b3696d7e71bf1b192724d1
3
+ size 3685848510
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09e830400d593b82493ba7e4476e5bce2651bc5219133da1ba8ccd69f234199d
3
+ size 3685847294
checkpoint-2000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2000
checkpoint-2000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aefe673b5c7a0562ed83534c1cc87ba53c50058c71672495a4bd5920db18e033
3
+ size 1228706240
checkpoint-2000/preprocessor_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "feature_extractor_type": "SeamlessM4TFeatureExtractor",
3
+ "feature_size": 80,
4
+ "num_mel_bins": 80,
5
+ "padding_side": "right",
6
+ "padding_value": 1,
7
+ "processor_class": "M4TProcessorWithLM",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000,
10
+ "stride": 2
11
+ }
checkpoint-2000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b88c07b734f0394fa3460acdd30bd1c1ecdbec8c4fe935e2aa9d3532dcb67c79
3
+ size 14512
checkpoint-2000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71a6b5b9aad93001c2054719d59a5e0b024eae5f275b39ad8ff21c41444c41cb
3
+ size 14512
checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:202cbce0eb1350cae2e3983bd312bf00c5e92864b59fa07e72237ea2d4c77f91
3
+ size 1064
checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.23469093535410654,
3
+ "best_model_checkpoint": "./checkpoints/w2v-multilingual-v1.3/checkpoint-2000",
4
+ "epoch": 0.1647627416520211,
5
+ "eval_steps": 2000,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001647627416520211,
13
+ "grad_norm": 0.2767059803009033,
14
+ "learning_rate": 4.9431537320810675e-08,
15
+ "loss": 0.1923,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.003295254833040422,
20
+ "grad_norm": 2.006911039352417,
21
+ "learning_rate": 1.977261492832427e-07,
22
+ "loss": 0.2947,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.004942882249560633,
27
+ "grad_norm": 0.3714193105697632,
28
+ "learning_rate": 3.624979403526116e-07,
29
+ "loss": 0.2955,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.006590509666080844,
34
+ "grad_norm": 0.3106062412261963,
35
+ "learning_rate": 5.272697314219806e-07,
36
+ "loss": 0.2754,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.008238137082601054,
41
+ "grad_norm": 3.2078254222869873,
42
+ "learning_rate": 6.838029329378811e-07,
43
+ "loss": 0.3177,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.009885764499121265,
48
+ "grad_norm": 0.38503074645996094,
49
+ "learning_rate": 8.485747240072501e-07,
50
+ "loss": 0.1905,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.011533391915641476,
55
+ "grad_norm": 0.15724419057369232,
56
+ "learning_rate": 1.013346515076619e-06,
57
+ "loss": 0.2942,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.013181019332161687,
62
+ "grad_norm": 0.5840986967086792,
63
+ "learning_rate": 1.1781183061459877e-06,
64
+ "loss": 0.2907,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.014828646748681899,
69
+ "grad_norm": 0.23122897744178772,
70
+ "learning_rate": 1.3346515076618883e-06,
71
+ "loss": 0.2811,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.016476274165202108,
76
+ "grad_norm": 2.7248637676239014,
77
+ "learning_rate": 1.4994232987312573e-06,
78
+ "loss": 0.3168,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.01812390158172232,
83
+ "grad_norm": 1.0846350193023682,
84
+ "learning_rate": 1.6641950898006263e-06,
85
+ "loss": 0.1979,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.01977152899824253,
90
+ "grad_norm": 1.7905633449554443,
91
+ "learning_rate": 1.828966880869995e-06,
92
+ "loss": 0.2656,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.021419156414762743,
97
+ "grad_norm": 0.31305554509162903,
98
+ "learning_rate": 1.993738671939364e-06,
99
+ "loss": 0.272,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.023066783831282953,
104
+ "grad_norm": 0.31258106231689453,
105
+ "learning_rate": 2.158510463008733e-06,
106
+ "loss": 0.2693,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.024714411247803162,
111
+ "grad_norm": 1.783349871635437,
112
+ "learning_rate": 2.323282254078102e-06,
113
+ "loss": 0.3116,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.026362038664323375,
118
+ "grad_norm": 0.6936488747596741,
119
+ "learning_rate": 2.488054045147471e-06,
120
+ "loss": 0.1931,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.028009666080843584,
125
+ "grad_norm": 0.6185577511787415,
126
+ "learning_rate": 2.65282583621684e-06,
127
+ "loss": 0.258,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.029657293497363797,
132
+ "grad_norm": 0.3592207729816437,
133
+ "learning_rate": 2.8175976272862085e-06,
134
+ "loss": 0.2401,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.03130492091388401,
139
+ "grad_norm": 1.2324920892715454,
140
+ "learning_rate": 2.982369418355578e-06,
141
+ "loss": 0.2371,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.032952548330404216,
146
+ "grad_norm": 1.5560214519500732,
147
+ "learning_rate": 3.147141209424947e-06,
148
+ "loss": 0.2414,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.03460017574692443,
153
+ "grad_norm": 0.8133947253227234,
154
+ "learning_rate": 3.3119130004943154e-06,
155
+ "loss": 0.1744,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.03624780316344464,
160
+ "grad_norm": 0.8599107265472412,
161
+ "learning_rate": 3.4766847915636844e-06,
162
+ "loss": 0.2536,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.03789543057996485,
167
+ "grad_norm": 0.3699595034122467,
168
+ "learning_rate": 3.641456582633054e-06,
169
+ "loss": 0.2552,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.03954305799648506,
174
+ "grad_norm": 1.2955116033554077,
175
+ "learning_rate": 3.797989784148954e-06,
176
+ "loss": 0.2532,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.041190685413005274,
181
+ "grad_norm": 11.518170356750488,
182
+ "learning_rate": 3.962761575218322e-06,
183
+ "loss": 0.2507,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.042838312829525486,
188
+ "grad_norm": 0.9779248833656311,
189
+ "learning_rate": 4.127533366287692e-06,
190
+ "loss": 0.1733,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.04448594024604569,
195
+ "grad_norm": 0.5386682152748108,
196
+ "learning_rate": 4.29230515735706e-06,
197
+ "loss": 0.2415,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.046133567662565905,
202
+ "grad_norm": 2.7366793155670166,
203
+ "learning_rate": 4.457076948426429e-06,
204
+ "loss": 0.2409,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.04778119507908612,
209
+ "grad_norm": 1.9912066459655762,
210
+ "learning_rate": 4.621848739495799e-06,
211
+ "loss": 0.2134,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.049428822495606324,
216
+ "grad_norm": 4.058573246002197,
217
+ "learning_rate": 4.786620530565167e-06,
218
+ "loss": 0.2456,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.05107644991212654,
223
+ "grad_norm": 0.37456750869750977,
224
+ "learning_rate": 4.951392321634536e-06,
225
+ "loss": 0.1589,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.05272407732864675,
230
+ "grad_norm": 0.7950440645217896,
231
+ "learning_rate": 5.116164112703905e-06,
232
+ "loss": 0.2485,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.05437170474516696,
237
+ "grad_norm": 1.884665846824646,
238
+ "learning_rate": 5.280935903773274e-06,
239
+ "loss": 0.2197,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.05601933216168717,
244
+ "grad_norm": 0.32170844078063965,
245
+ "learning_rate": 5.445707694842643e-06,
246
+ "loss": 0.2111,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.05766695957820738,
251
+ "grad_norm": 1.8230172395706177,
252
+ "learning_rate": 5.610479485912012e-06,
253
+ "loss": 0.2379,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.059314586994727594,
258
+ "grad_norm": 1.2472524642944336,
259
+ "learning_rate": 5.775251276981381e-06,
260
+ "loss": 0.1684,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.0609622144112478,
265
+ "grad_norm": 0.29022061824798584,
266
+ "learning_rate": 5.94002306805075e-06,
267
+ "loss": 0.2201,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.06260984182776802,
272
+ "grad_norm": 0.49721184372901917,
273
+ "learning_rate": 6.104794859120118e-06,
274
+ "loss": 0.2297,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.06425746924428823,
279
+ "grad_norm": 0.6133716106414795,
280
+ "learning_rate": 6.269566650189487e-06,
281
+ "loss": 0.3173,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.06590509666080843,
286
+ "grad_norm": 0.9667792320251465,
287
+ "learning_rate": 6.434338441258857e-06,
288
+ "loss": 0.2349,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.06755272407732865,
293
+ "grad_norm": 0.3177216053009033,
294
+ "learning_rate": 6.599110232328226e-06,
295
+ "loss": 0.1635,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.06920035149384886,
300
+ "grad_norm": 0.8457621335983276,
301
+ "learning_rate": 6.763882023397594e-06,
302
+ "loss": 0.2777,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.07084797891036906,
307
+ "grad_norm": 0.3330087661743164,
308
+ "learning_rate": 6.928653814466963e-06,
309
+ "loss": 0.2154,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.07249560632688928,
314
+ "grad_norm": 0.5845814943313599,
315
+ "learning_rate": 7.093425605536333e-06,
316
+ "loss": 0.2164,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.07414323374340949,
321
+ "grad_norm": 2.325303554534912,
322
+ "learning_rate": 7.258197396605701e-06,
323
+ "loss": 0.2068,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.0757908611599297,
328
+ "grad_norm": 0.21893823146820068,
329
+ "learning_rate": 7.414730598121602e-06,
330
+ "loss": 0.1621,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.07743848857644992,
335
+ "grad_norm": 0.5854327082633972,
336
+ "learning_rate": 7.5795023891909705e-06,
337
+ "loss": 0.2281,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.07908611599297012,
342
+ "grad_norm": 0.2406030148267746,
343
+ "learning_rate": 7.74427418026034e-06,
344
+ "loss": 0.2342,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.08073374340949033,
349
+ "grad_norm": 1.3764126300811768,
350
+ "learning_rate": 7.90904597132971e-06,
351
+ "loss": 0.2018,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.08238137082601055,
356
+ "grad_norm": 0.9587862491607666,
357
+ "learning_rate": 8.073817762399077e-06,
358
+ "loss": 0.2489,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 0.08402899824253075,
363
+ "grad_norm": 0.9726558923721313,
364
+ "learning_rate": 8.238589553468447e-06,
365
+ "loss": 0.154,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 0.08567662565905097,
370
+ "grad_norm": 1.9828400611877441,
371
+ "learning_rate": 8.403361344537817e-06,
372
+ "loss": 0.2336,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 0.08732425307557118,
377
+ "grad_norm": 0.14761961996555328,
378
+ "learning_rate": 8.568133135607183e-06,
379
+ "loss": 0.1949,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 0.08897188049209138,
384
+ "grad_norm": 0.39077144861221313,
385
+ "learning_rate": 8.732904926676553e-06,
386
+ "loss": 0.2067,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 0.0906195079086116,
391
+ "grad_norm": 2.3257837295532227,
392
+ "learning_rate": 8.897676717745921e-06,
393
+ "loss": 0.2184,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 0.09226713532513181,
398
+ "grad_norm": 1.0966060161590576,
399
+ "learning_rate": 9.062448508815291e-06,
400
+ "loss": 0.1655,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 0.09391476274165202,
405
+ "grad_norm": 0.5648412704467773,
406
+ "learning_rate": 9.227220299884661e-06,
407
+ "loss": 0.2097,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 0.09556239015817224,
412
+ "grad_norm": 0.49816444516181946,
413
+ "learning_rate": 9.39199209095403e-06,
414
+ "loss": 0.2052,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 0.09721001757469244,
419
+ "grad_norm": 1.1164054870605469,
420
+ "learning_rate": 9.556763882023397e-06,
421
+ "loss": 0.2298,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 0.09885764499121265,
426
+ "grad_norm": 0.9453270435333252,
427
+ "learning_rate": 9.721535673092767e-06,
428
+ "loss": 0.2157,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 0.10050527240773287,
433
+ "grad_norm": 0.4588276743888855,
434
+ "learning_rate": 9.886307464162135e-06,
435
+ "loss": 0.1433,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 0.10215289982425307,
440
+ "grad_norm": 0.47535696625709534,
441
+ "learning_rate": 1.0051079255231505e-05,
442
+ "loss": 0.2115,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 0.10380052724077328,
447
+ "grad_norm": 0.585959792137146,
448
+ "learning_rate": 1.0215851046300875e-05,
449
+ "loss": 0.2245,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 0.1054481546572935,
454
+ "grad_norm": 0.24861204624176025,
455
+ "learning_rate": 1.0380622837370241e-05,
456
+ "loss": 0.1981,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 0.1070957820738137,
461
+ "grad_norm": 31.602128982543945,
462
+ "learning_rate": 1.0545394628439611e-05,
463
+ "loss": 0.2265,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 0.10874340949033393,
468
+ "grad_norm": 0.6234269142150879,
469
+ "learning_rate": 1.0710166419508981e-05,
470
+ "loss": 0.154,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 0.11039103690685413,
475
+ "grad_norm": 1.2423540353775024,
476
+ "learning_rate": 1.087493821057835e-05,
477
+ "loss": 0.2062,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 0.11203866432337434,
482
+ "grad_norm": 0.2090279757976532,
483
+ "learning_rate": 1.1039710001647719e-05,
484
+ "loss": 0.2214,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 0.11368629173989456,
489
+ "grad_norm": 0.6145613193511963,
490
+ "learning_rate": 1.1204481792717087e-05,
491
+ "loss": 0.1942,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 0.11533391915641476,
496
+ "grad_norm": 0.9004138708114624,
497
+ "learning_rate": 1.1369253583786455e-05,
498
+ "loss": 0.2271,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 0.11698154657293497,
503
+ "grad_norm": 1.609165906906128,
504
+ "learning_rate": 1.1534025374855825e-05,
505
+ "loss": 0.1606,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 0.11862917398945519,
510
+ "grad_norm": 0.8725568652153015,
511
+ "learning_rate": 1.1698797165925195e-05,
512
+ "loss": 0.204,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 0.1202768014059754,
517
+ "grad_norm": 1.8169455528259277,
518
+ "learning_rate": 1.1863568956994563e-05,
519
+ "loss": 0.207,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 0.1219244288224956,
524
+ "grad_norm": 0.37334388494491577,
525
+ "learning_rate": 1.2028340748063933e-05,
526
+ "loss": 0.2033,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 0.12357205623901582,
531
+ "grad_norm": 15.727474212646484,
532
+ "learning_rate": 1.2193112539133301e-05,
533
+ "loss": 0.3298,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 0.12521968365553604,
538
+ "grad_norm": 4.70903205871582,
539
+ "learning_rate": 1.2357884330202669e-05,
540
+ "loss": 0.159,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 0.12686731107205623,
545
+ "grad_norm": 0.4843326807022095,
546
+ "learning_rate": 1.2522656121272039e-05,
547
+ "loss": 0.2141,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 0.12851493848857645,
552
+ "grad_norm": 0.572084367275238,
553
+ "learning_rate": 1.2687427912341407e-05,
554
+ "loss": 0.2182,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 0.13016256590509667,
559
+ "grad_norm": 0.31078797578811646,
560
+ "learning_rate": 1.2852199703410777e-05,
561
+ "loss": 0.1994,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 0.13181019332161686,
566
+ "grad_norm": 9.014205932617188,
567
+ "learning_rate": 1.3016971494480145e-05,
568
+ "loss": 0.2089,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 0.13345782073813708,
573
+ "grad_norm": 1.0150245428085327,
574
+ "learning_rate": 1.3181743285549513e-05,
575
+ "loss": 0.1521,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 0.1351054481546573,
580
+ "grad_norm": 0.25271451473236084,
581
+ "learning_rate": 1.3346515076618885e-05,
582
+ "loss": 0.1996,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 0.1367530755711775,
587
+ "grad_norm": 0.47118502855300903,
588
+ "learning_rate": 1.3511286867688253e-05,
589
+ "loss": 0.2059,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 0.13840070298769772,
594
+ "grad_norm": 0.5134350657463074,
595
+ "learning_rate": 1.3676058658757621e-05,
596
+ "loss": 0.1935,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 0.14004833040421794,
601
+ "grad_norm": 1.0354816913604736,
602
+ "learning_rate": 1.384083044982699e-05,
603
+ "loss": 0.2103,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 0.14169595782073813,
608
+ "grad_norm": 0.5588876605033875,
609
+ "learning_rate": 1.4005602240896359e-05,
610
+ "loss": 0.1598,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 0.14334358523725835,
615
+ "grad_norm": 0.7309175133705139,
616
+ "learning_rate": 1.4170374031965727e-05,
617
+ "loss": 0.2204,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 0.14499121265377857,
622
+ "grad_norm": 0.6155902743339539,
623
+ "learning_rate": 1.4335145823035099e-05,
624
+ "loss": 0.2133,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 0.14663884007029876,
629
+ "grad_norm": 0.7660940885543823,
630
+ "learning_rate": 1.4499917614104467e-05,
631
+ "loss": 0.2065,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 0.14828646748681898,
636
+ "grad_norm": 1.1954026222229004,
637
+ "learning_rate": 1.4664689405173835e-05,
638
+ "loss": 0.2147,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 0.1499340949033392,
643
+ "grad_norm": 0.4249323606491089,
644
+ "learning_rate": 1.4829461196243205e-05,
645
+ "loss": 0.1553,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 0.1515817223198594,
650
+ "grad_norm": 2.9014129638671875,
651
+ "learning_rate": 1.4994232987312573e-05,
652
+ "loss": 0.2208,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 0.1532293497363796,
657
+ "grad_norm": 1.6474498510360718,
658
+ "learning_rate": 1.5159004778381941e-05,
659
+ "loss": 0.209,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 0.15487697715289983,
664
+ "grad_norm": 0.1585623174905777,
665
+ "learning_rate": 1.532377656945131e-05,
666
+ "loss": 0.1873,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 0.15652460456942002,
671
+ "grad_norm": 1.171941876411438,
672
+ "learning_rate": 1.548854836052068e-05,
673
+ "loss": 0.2389,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 0.15817223198594024,
678
+ "grad_norm": 0.48890382051467896,
679
+ "learning_rate": 1.5653320151590047e-05,
680
+ "loss": 0.1679,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 0.15981985940246046,
685
+ "grad_norm": 0.5568016767501831,
686
+ "learning_rate": 1.581809194265942e-05,
687
+ "loss": 0.1968,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 0.16146748681898065,
692
+ "grad_norm": 0.9775394797325134,
693
+ "learning_rate": 1.5982863733728787e-05,
694
+ "loss": 0.2208,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 0.16311511423550087,
699
+ "grad_norm": 0.60302734375,
700
+ "learning_rate": 1.6147635524798155e-05,
701
+ "loss": 0.1929,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 0.1647627416520211,
706
+ "grad_norm": 1.7513552904129028,
707
+ "learning_rate": 1.6312407315867526e-05,
708
+ "loss": 0.2055,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 0.1647627416520211,
713
+ "eval_loss": 0.5699400305747986,
714
+ "eval_runtime": 686.8117,
715
+ "eval_samples_per_second": 31.725,
716
+ "eval_steps_per_second": 7.932,
717
+ "eval_wer": 0.23469093535410654,
718
+ "step": 2000
719
+ }
720
+ ],
721
+ "logging_steps": 20,
722
+ "max_steps": 60690,
723
+ "num_input_tokens_seen": 0,
724
+ "num_train_epochs": 5,
725
+ "save_steps": 2000,
726
+ "stateful_callbacks": {
727
+ "TrainerControl": {
728
+ "args": {
729
+ "should_epoch_stop": false,
730
+ "should_evaluate": false,
731
+ "should_log": false,
732
+ "should_save": true,
733
+ "should_training_stop": false
734
+ },
735
+ "attributes": {}
736
+ }
737
+ },
738
+ "total_flos": 1.0783600786383307e+20,
739
+ "train_batch_size": 24,
740
+ "trial_name": null,
741
+ "trial_params": null
742
+ }
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:523a85cdb294d1c4c61a6e49dd5260f441dad9fd7af932d1f950b5017f36ac73
3
+ size 6648
checkpoint-2000/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)