|
accumulative_counts = 2 |
|
batch_size = 4 |
|
betas = ( |
|
0.9, |
|
0.999, |
|
) |
|
custom_hooks = [ |
|
dict( |
|
tokenizer=dict( |
|
pretrained_model_name_or_path= |
|
'/root/share/new_models/OpenGVLab/InternVL2-2B', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.engine.hooks.DatasetInfoHook'), |
|
] |
|
data_path = '/root/share/datasets/FoodieQA/sivqa_llava.json' |
|
data_root = '/root/share/datasets/FoodieQA/' |
|
dataloader_num_workers = 4 |
|
default_hooks = dict( |
|
checkpoint=dict( |
|
by_epoch=False, |
|
interval=64, |
|
max_keep_ckpts=-1, |
|
save_optimizer=False, |
|
type='mmengine.hooks.CheckpointHook'), |
|
logger=dict( |
|
interval=10, |
|
log_metric_by_epoch=False, |
|
type='mmengine.hooks.LoggerHook'), |
|
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'), |
|
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'), |
|
timer=dict(type='mmengine.hooks.IterTimerHook')) |
|
env_cfg = dict( |
|
cudnn_benchmark=False, |
|
dist_cfg=dict(backend='nccl'), |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) |
|
image_folder = '/root/share/datasets/FoodieQA/' |
|
launcher = 'none' |
|
llava_dataset = dict( |
|
data_paths='/root/share/datasets/FoodieQA/sivqa_llava.json', |
|
image_folders='/root/share/datasets/FoodieQA/', |
|
max_length=8192, |
|
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B', |
|
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat', |
|
type='xtuner.dataset.InternVL_V1_5_Dataset') |
|
load_from = None |
|
log_level = 'INFO' |
|
log_processor = dict(by_epoch=False) |
|
lr = 3e-05 |
|
max_epochs = 10 |
|
max_length = 8192 |
|
max_norm = 1 |
|
model = dict( |
|
freeze_llm=True, |
|
freeze_visual_encoder=True, |
|
llm_lora=dict( |
|
lora_alpha=256, |
|
lora_dropout=0.05, |
|
r=128, |
|
target_modules=None, |
|
task_type='CAUSAL_LM', |
|
type='peft.LoraConfig'), |
|
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B', |
|
type='xtuner.model.InternVL_V1_5') |
|
optim_type = 'torch.optim.AdamW' |
|
optim_wrapper = dict( |
|
optimizer=dict( |
|
betas=( |
|
0.9, |
|
0.999, |
|
), |
|
lr=3e-05, |
|
type='torch.optim.AdamW', |
|
weight_decay=0.05), |
|
type='DeepSpeedOptimWrapper') |
|
param_scheduler = [ |
|
dict( |
|
begin=0, |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
end=0.3, |
|
start_factor=1e-05, |
|
type='mmengine.optim.LinearLR'), |
|
dict( |
|
begin=0.3, |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
end=10, |
|
eta_min=0.0, |
|
type='mmengine.optim.CosineAnnealingLR'), |
|
] |
|
path = '/root/share/new_models/OpenGVLab/InternVL2-2B' |
|
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat' |
|
randomness = dict(deterministic=False, seed=None) |
|
resume = False |
|
runner_type = 'FlexibleRunner' |
|
save_steps = 64 |
|
save_total_limit = -1 |
|
strategy = dict( |
|
config=dict( |
|
bf16=dict(enabled=True), |
|
fp16=dict(enabled=False, initial_scale_power=16), |
|
gradient_accumulation_steps='auto', |
|
gradient_clipping='auto', |
|
train_micro_batch_size_per_gpu='auto', |
|
zero_allow_untested_optimizer=True, |
|
zero_force_ds_cpu_optimizer=False, |
|
zero_optimization=dict(overlap_comm=True, stage=2)), |
|
exclude_frozen_parameters=True, |
|
gradient_accumulation_steps=2, |
|
gradient_clipping=1, |
|
sequence_parallel_size=1, |
|
train_micro_batch_size_per_gpu=4, |
|
type='xtuner.engine.DeepSpeedStrategy') |
|
tokenizer = dict( |
|
pretrained_model_name_or_path= |
|
'/root/share/new_models/OpenGVLab/InternVL2-2B', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained') |
|
train_cfg = dict(max_epochs=10, type='xtuner.engine.runner.TrainLoop') |
|
train_dataloader = dict( |
|
batch_size=4, |
|
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'), |
|
dataset=dict( |
|
data_paths='/root/share/datasets/FoodieQA/sivqa_llava.json', |
|
image_folders='/root/share/datasets/FoodieQA/', |
|
max_length=8192, |
|
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B', |
|
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat', |
|
type='xtuner.dataset.InternVL_V1_5_Dataset'), |
|
num_workers=4, |
|
sampler=dict( |
|
length_property='modality_length', |
|
per_device_batch_size=8, |
|
type='xtuner.dataset.samplers.LengthGroupedSampler')) |
|
visualizer = None |
|
warmup_ratio = 0.03 |
|
weight_decay = 0.05 |
|
work_dir = './work_dirs/internvl_v2_internlm2_2b_lora_finetune_food' |
|
|