foodie_InternVL / internvl_v2_internlm2_2b_lora_finetune_food.py
kazenokizi's picture
add model files
232b3ba
accumulative_counts = 2
batch_size = 4
betas = (
0.9,
0.999,
)
custom_hooks = [
dict(
tokenizer=dict(
pretrained_model_name_or_path=
'/root/share/new_models/OpenGVLab/InternVL2-2B',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.engine.hooks.DatasetInfoHook'),
]
data_path = '/root/share/datasets/FoodieQA/sivqa_llava.json'
data_root = '/root/share/datasets/FoodieQA/'
dataloader_num_workers = 4
default_hooks = dict(
checkpoint=dict(
by_epoch=False,
interval=64,
max_keep_ckpts=-1,
save_optimizer=False,
type='mmengine.hooks.CheckpointHook'),
logger=dict(
interval=10,
log_metric_by_epoch=False,
type='mmengine.hooks.LoggerHook'),
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
image_folder = '/root/share/datasets/FoodieQA/'
launcher = 'none'
llava_dataset = dict(
data_paths='/root/share/datasets/FoodieQA/sivqa_llava.json',
image_folders='/root/share/datasets/FoodieQA/',
max_length=8192,
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B',
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
type='xtuner.dataset.InternVL_V1_5_Dataset')
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False)
lr = 3e-05
max_epochs = 10
max_length = 8192
max_norm = 1
model = dict(
freeze_llm=True,
freeze_visual_encoder=True,
llm_lora=dict(
lora_alpha=256,
lora_dropout=0.05,
r=128,
target_modules=None,
task_type='CAUSAL_LM',
type='peft.LoraConfig'),
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B',
type='xtuner.model.InternVL_V1_5')
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(
optimizer=dict(
betas=(
0.9,
0.999,
),
lr=3e-05,
type='torch.optim.AdamW',
weight_decay=0.05),
type='DeepSpeedOptimWrapper')
param_scheduler = [
dict(
begin=0,
by_epoch=True,
convert_to_iter_based=True,
end=0.3,
start_factor=1e-05,
type='mmengine.optim.LinearLR'),
dict(
begin=0.3,
by_epoch=True,
convert_to_iter_based=True,
end=10,
eta_min=0.0,
type='mmengine.optim.CosineAnnealingLR'),
]
path = '/root/share/new_models/OpenGVLab/InternVL2-2B'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
randomness = dict(deterministic=False, seed=None)
resume = False
runner_type = 'FlexibleRunner'
save_steps = 64
save_total_limit = -1
strategy = dict(
config=dict(
bf16=dict(enabled=True),
fp16=dict(enabled=False, initial_scale_power=16),
gradient_accumulation_steps='auto',
gradient_clipping='auto',
train_micro_batch_size_per_gpu='auto',
zero_allow_untested_optimizer=True,
zero_force_ds_cpu_optimizer=False,
zero_optimization=dict(overlap_comm=True, stage=2)),
exclude_frozen_parameters=True,
gradient_accumulation_steps=2,
gradient_clipping=1,
sequence_parallel_size=1,
train_micro_batch_size_per_gpu=4,
type='xtuner.engine.DeepSpeedStrategy')
tokenizer = dict(
pretrained_model_name_or_path=
'/root/share/new_models/OpenGVLab/InternVL2-2B',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(max_epochs=10, type='xtuner.engine.runner.TrainLoop')
train_dataloader = dict(
batch_size=4,
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
dataset=dict(
data_paths='/root/share/datasets/FoodieQA/sivqa_llava.json',
image_folders='/root/share/datasets/FoodieQA/',
max_length=8192,
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B',
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
type='xtuner.dataset.InternVL_V1_5_Dataset'),
num_workers=4,
sampler=dict(
length_property='modality_length',
per_device_batch_size=8,
type='xtuner.dataset.samplers.LengthGroupedSampler'))
visualizer = None
warmup_ratio = 0.03
weight_decay = 0.05
work_dir = './work_dirs/internvl_v2_internlm2_2b_lora_finetune_food'