|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from functools import partial |
|
|
|
|
|
@dataclass |
|
class ModelArgs: |
|
codebook_size: int = 16384 |
|
codebook_embed_dim: int = 8 |
|
codebook_l2_norm: bool = True |
|
codebook_show_usage: bool = True |
|
commit_loss_beta: float = 0.25 |
|
entropy_loss_ratio: float = 0.0 |
|
|
|
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4]) |
|
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4]) |
|
z_channels: int = 256 |
|
dropout_p: float = 0.0 |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=3, |
|
ch=128, |
|
ch_mult=(1, 1, 2, 2, 4), |
|
num_res_blocks=2, |
|
norm_type="group", |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
z_channels=256, |
|
): |
|
super().__init__() |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.conv_blocks = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
conv_block = nn.Module() |
|
|
|
res_block = nn.ModuleList() |
|
attn_block = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks): |
|
res_block.append( |
|
ResnetBlock( |
|
block_in, block_out, dropout=dropout, norm_type=norm_type |
|
) |
|
) |
|
block_in = block_out |
|
if i_level == self.num_resolutions - 1: |
|
attn_block.append(AttnBlock(block_in, norm_type)) |
|
conv_block.res = res_block |
|
conv_block.attn = attn_block |
|
|
|
if i_level != self.num_resolutions - 1: |
|
conv_block.downsample = Downsample(block_in, resamp_with_conv) |
|
self.conv_blocks.append(conv_block) |
|
|
|
|
|
self.mid = nn.ModuleList() |
|
self.mid.append( |
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) |
|
) |
|
self.mid.append(AttnBlock(block_in, norm_type=norm_type)) |
|
self.mid.append( |
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) |
|
) |
|
|
|
|
|
self.norm_out = Normalize(block_in, norm_type) |
|
self.conv_out = nn.Conv2d( |
|
block_in, z_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
h = self.conv_in(x) |
|
|
|
for i_level, block in enumerate(self.conv_blocks): |
|
for i_block in range(self.num_res_blocks): |
|
h = block.res[i_block](h) |
|
if len(block.attn) > 0: |
|
h = block.attn[i_block](h) |
|
if i_level != self.num_resolutions - 1: |
|
h = block.downsample(h) |
|
|
|
|
|
for mid_block in self.mid: |
|
h = mid_block(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
z_channels=256, |
|
ch=128, |
|
ch_mult=(1, 1, 2, 2, 4), |
|
num_res_blocks=2, |
|
norm_type="group", |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
out_channels=3, |
|
): |
|
super().__init__() |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
|
|
self.conv_in = nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.mid = nn.ModuleList() |
|
self.mid.append( |
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) |
|
) |
|
self.mid.append(AttnBlock(block_in, norm_type=norm_type)) |
|
self.mid.append( |
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) |
|
) |
|
|
|
|
|
self.conv_blocks = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
conv_block = nn.Module() |
|
|
|
res_block = nn.ModuleList() |
|
attn_block = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks + 1): |
|
res_block.append( |
|
ResnetBlock( |
|
block_in, block_out, dropout=dropout, norm_type=norm_type |
|
) |
|
) |
|
block_in = block_out |
|
if i_level == self.num_resolutions - 1: |
|
attn_block.append(AttnBlock(block_in, norm_type)) |
|
conv_block.res = res_block |
|
conv_block.attn = attn_block |
|
|
|
if i_level != 0: |
|
conv_block.upsample = Upsample(block_in, resamp_with_conv) |
|
self.conv_blocks.append(conv_block) |
|
|
|
|
|
self.norm_out = Normalize(block_in, norm_type) |
|
self.conv_out = nn.Conv2d( |
|
block_in, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
@property |
|
def last_layer(self): |
|
return self.conv_out.weight |
|
|
|
def forward(self, z): |
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
for mid_block in self.mid: |
|
h = mid_block(h) |
|
|
|
|
|
for i_level, block in enumerate(self.conv_blocks): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = block.res[i_block](h) |
|
if len(block.attn) > 0: |
|
h = block.attn[i_block](h) |
|
if i_level != self.num_resolutions - 1: |
|
h = block.upsample(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.entropy_loss_ratio = entropy_loss_ratio |
|
self.l2_norm = l2_norm |
|
self.show_usage = show_usage |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
if self.l2_norm: |
|
self.embedding.weight.data = F.normalize( |
|
self.embedding.weight.data, p=2, dim=-1 |
|
) |
|
if self.show_usage: |
|
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536))) |
|
|
|
def forward(self, z): |
|
|
|
z = torch.einsum("b c h w -> b h w c", z).contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
if self.l2_norm: |
|
z = F.normalize(z, p=2, dim=-1) |
|
z_flattened = F.normalize(z_flattened, p=2, dim=-1) |
|
embedding = F.normalize(self.embedding.weight, p=2, dim=-1) |
|
else: |
|
embedding = self.embedding.weight |
|
|
|
d = ( |
|
torch.sum(z_flattened**2, dim=1, keepdim=True) |
|
+ torch.sum(embedding**2, dim=1) |
|
- 2 |
|
* torch.einsum( |
|
"bd,dn->bn", z_flattened, torch.einsum("n d -> d n", embedding) |
|
) |
|
) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = embedding[min_encoding_indices].view(z.shape) |
|
perplexity = None |
|
min_encodings = None |
|
vq_loss = None |
|
commit_loss = None |
|
entropy_loss = None |
|
|
|
|
|
if self.training: |
|
vq_loss = torch.mean((z_q - z.detach()) ** 2) |
|
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2) |
|
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
z_q = torch.einsum("b h w c -> b c h w", z_q) |
|
|
|
return ( |
|
z_q, |
|
(vq_loss, commit_loss, entropy_loss), |
|
(perplexity, min_encodings, min_encoding_indices), |
|
) |
|
|
|
def get_codebook_entry(self, indices, shape=None, channel_first=True): |
|
|
|
if self.l2_norm: |
|
embedding = F.normalize(self.embedding.weight, p=2, dim=-1) |
|
else: |
|
embedding = self.embedding.weight |
|
z_q = embedding[indices] |
|
|
|
if shape is not None: |
|
if channel_first: |
|
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1]) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
else: |
|
z_q = z_q.view(shape) |
|
return z_q |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout=0.0, |
|
norm_type="group", |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels, norm_type) |
|
self.conv1 = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.norm2 = Normalize(out_channels, norm_type) |
|
self.dropout = nn.Dropout(dropout) |
|
self.conv2 = nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
else: |
|
self.nin_shortcut = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
return x + h |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels, norm_type="group"): |
|
super().__init__() |
|
self.norm = Normalize(in_channels, norm_type) |
|
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.proj_out = nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, c, h * w) |
|
q = q.permute(0, 2, 1) |
|
k = k.reshape(b, c, h * w) |
|
w_ = torch.bmm(q, k) |
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = F.softmax(w_, dim=2) |
|
|
|
|
|
v = v.reshape(b, c, h * w) |
|
w_ = w_.permute(0, 2, 1) |
|
h_ = torch.bmm(v, w_) |
|
h_ = h_.reshape(b, c, h, w) |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels, norm_type="group"): |
|
assert norm_type in ["group", "batch"] |
|
if norm_type == "group": |
|
return nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
elif norm_type == "batch": |
|
return nn.SyncBatchNorm(in_channels) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
if x.dtype != torch.float32: |
|
x = F.interpolate(x.to(torch.float), scale_factor=2.0, mode="nearest").to( |
|
torch.bfloat16 |
|
) |
|
else: |
|
x = F.interpolate(x, scale_factor=2.0, mode="nearest") |
|
|
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv = nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0, 1, 0, 1) |
|
x = F.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = F.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01): |
|
flat_affinity = affinity.reshape(-1, affinity.shape[-1]) |
|
flat_affinity /= temperature |
|
probs = F.softmax(flat_affinity, dim=-1) |
|
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1) |
|
if loss_type == "softmax": |
|
target_probs = probs |
|
else: |
|
raise ValueError("Entropy loss {} not supported".format(loss_type)) |
|
avg_probs = torch.mean(target_probs, dim=0) |
|
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + 1e-5)) |
|
sample_entropy = -torch.mean(torch.sum(target_probs * log_probs, dim=-1)) |
|
loss = sample_entropy - avg_entropy |
|
return loss |
|
|
|
|
|
class VQModel(nn.Module): |
|
def __init__(self, config: ModelArgs): |
|
super().__init__() |
|
self.config = config |
|
self.encoder = Encoder( |
|
ch_mult=config.encoder_ch_mult, |
|
z_channels=config.z_channels, |
|
dropout=config.dropout_p, |
|
) |
|
self.decoder = Decoder( |
|
ch_mult=config.decoder_ch_mult, |
|
z_channels=config.z_channels, |
|
dropout=config.dropout_p, |
|
) |
|
|
|
self.quantize = VectorQuantizer( |
|
config.codebook_size, |
|
config.codebook_embed_dim, |
|
config.commit_loss_beta, |
|
config.entropy_loss_ratio, |
|
config.codebook_l2_norm, |
|
config.codebook_show_usage, |
|
) |
|
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1) |
|
self.post_quant_conv = nn.Conv2d( |
|
config.codebook_embed_dim, config.z_channels, 1 |
|
) |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
quant, emb_loss, info = self.quantize(h) |
|
return quant, emb_loss, info |
|
|
|
def decode(self, quant): |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
return dec |
|
|
|
def decode_code(self, code_b, shape=None, channel_first=True): |
|
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first) |
|
dec = self.decode(quant_b) |
|
return dec |
|
|
|
def forward(self, input): |
|
quant, diff, _ = self.encode(input) |
|
dec = self.decode(quant) |
|
return dec, diff |
|
|
|
|
|
|
|
|
|
|
|
def VQ_16(**kwargs): |
|
return VQModel( |
|
ModelArgs( |
|
encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs |
|
) |
|
) |
|
|
|
|
|
VQ_models = {"VQ-16": VQ_16} |
|
|